Fuel Capability Demonstration Test Report 2 for the JEA Large-Scale CFB Combustion Demonstration Project

50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

Submitted to U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory (NETL) Pittsburgh, Pennsylvania 15236 Cooperative Agreement No. DE-FC21-90MC27403

December 3, 2004

DOE Issue, Rev. 1

Prepared by Black & Veatch for:

TABLE OF CONTENTS

1.0		INTRODUCTION	1
	1.1	TEST SCHEDULE	1
2.0		SUMMARY OF TEST RESULTS	7
	2.2	TEST REQUIREMENTS VALVE LINE REQUIREMENTS TEST RESULTS	7
3.0		BOILER EFFICIENCY TESTS1	1
		CALCULATION METHOD	
4.0		AQCS INLET AND STACK TESTS1	3
	4.2 4.3 4.4	SYSTEM DESCRIPTION	3
ΑT	ТАС	HMENTS1	7
	ΑT	FACHMENT A - FUEL CAPABILITY DEMONSTRATION TEST PROTOCOL	
	AT	TACHMENT B - BOILER EFFICIENCY CALCULATION	
	ΑT	TACHMENT C - CAE TEST REPORT	
	AT	TACHMENT D - PI DATA SUMMARY	
	ΑT	TACHMENT E - ABBREVIATION LIST	
	AT	TACHMENT F - ISOLATION VALVE LIST	
	ΑT	TACHMENT G - FUEL ANALYSES - 50/50 BLEND PET COKE AND PITTSBURGH 8	
	AT	TACHMENT H - LIMESTONE ANALYSES	
	ΑT	TACHMENT I - BED ASH ANALYSES	
	AT	TACHMENT J - FLY ASH (AIR HEATER AND PJFF) ANALYSES	
	ΑT	FACHMENT K - AMBIENT DATA, JAN. 27, 2004 AND JAN. 28, 2004	
	ΑТ	FACHMENT I - AMBIENT DATA JAN 29 2004 JAN 30 2004 AND JAN 31 2004	

TABLES

TABLE 1 - TESTS RESULTS - 100% LOAD						
TABLE 2 - BO	ILER & SDA SO2 REMOVAL EFFICIENCY1	O				
TABLE 3 - TES	ST RESULTS - PARTIAL LOADS	O				
	FIGURES					
FIGURE 1	- GENERAL ARRANGEMENT PLAN, DRAWING NO. 3847-1-100, REV. 3					
FIGURE 2	- GENERAL ARRANGEMENT ELEVATION, DRAWING NO. 3847-1-101, REV. 3					
FIGURE 3	- FABRIC FILTER EAST END ELEVATION, DRAWING NO. 3847-9-268, REV. 2					
FIGURE 4	- GENERAL ARRANGEMENT UNIT 2 ISO VIEW (RIGHT SIDE), DRAWING NO. 43-7587-5-53					
FIGURE 5	- GENERAL ARRANGEMENT UNIT 2 FRONT ELEVATION VIEW A-A, DRAWING NO. 43-7587-5-50, REV. C					
FIGURE 6	- GENERAL ARRANGEMENT UNIT 2 SIDE ELEVATION, DRAWING NO. 43-7587-5-51, REV. C					

Fuel Capability Demonstration Test Report #2 p-1 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

1.0 INTRODUCTION

The agreement between the US Department of Energy (DOE) and JEA covering DOE participation in the Northside Unit 2 project required JEA to demonstrate fuel flexibility of the unit to utilize a variety of different fuels. Therefore, it was necessary for JEA to demonstrate this capability through a series of tests.

The purpose of the test program was to document the ability of the unit to utilize a variety of fuels and fuel blends in a cost effective and environmentally responsible manner. Fuel flexibility would be quantified by measuring the following parameters:

- Boiler efficiency
- CFB boiler sulfur capture
- AQCS sulfur and particulate capture
- The following flue gas emissions
 - Particulate matter (PM)
 - Oxides of nitrogen (NO_x)
 - Sulfur dioxide (SO₂)
 - Carbon monoxide (CO)
 - Carbon dioxide (CO₂)
- Ammonia (NH₃)
- Lead (Pb)
- Mercury (Hg)
- Fluorine (F)
- Dioxin
- Furan

Stack opacity

This test report documents the results of JEA's Fuel Capability Demonstration Tests firing a 50/50 blend of Petroleum Coke and Pittsburgh 8 coal for the JEA Large-Scale CFB Combustion Demonstration Project. The term "blend" will be used throughout this report to describe the 50/50 blend of the two fuels. The tests were conducted in accordance with the Fuel Demonstration Test Protocol in Attachment A.

Throughout this report, unless otherwise indicated, the term "unit" refers to the combination of the circulating fluidized bed (CFB) boiler and the air quality control system (AQCS). The AQCS consists of a lime-based spray dryer absorber (SDA) and a pulse jet fabric filter (PJFF).

1.1 Test Schedule

Unit 2 of the JEA Northside plant site is a Circulating Fluidized Bed Steam Generator designed and constructed by Foster-Wheeler. The steam generator was designed to deliver main steam to the steam turbine at a flow rate of 1,993,591 lb/hr, at a throttle pressure of 2,500 psig, and at a throttle temperature of 1,000 deg F when firing Pittsburgh 8 coal.

The fuel capability demonstration test for the unit firing the blended coal was conducted over a five (5) day period beginning on January 27, 2004 and completed on January 31, 2004. During that five (5) day period, data were taken in accordance with the Test Protocol (Attachment A) while the unit was operating at 100% load, 80% load, 60% load, and 40% load.

Fuel Capability Demonstration Test Report #2 p-2 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

The following log represents the sequence of testing:

- Day 1 January 27, 2004:
 - Unit at 100% load turbine load set and maintained at approx. 300 MW.
 - o Flue gas testing commenced at 1135 hours; completed at 2026 hours.
 - Boiler performance testing commenced at 1130 hours; completed at 1530 hours.
- Day 2 January 28, 2004:
 - Unit at 100% load turbine load set and maintained at approx. 300 MW.
 - o Flue gas testing commenced at 1000 hours; completed at 1604 hours.
 - Boiler performance testing commenced at 1000 hours.
 - The A1 fuel feeder went off-line at approximately 1230 hours. A1 fuel feeder back on line at approximately 1430 hours. The unit was allowed to stabilize. The test continued at 1600 hours. The test was completed at 1800 hours.
- Day 3 January 29, 2004:
 - Unit at 80% load turbine load set and maintained at approx. 240 MW.
 - Unit began 2-hour stabilization period at 240 MW at 1315 hours.
 - Boiler performance testing commenced at 1500 hours after stabilization period completed; test completed at 1900 hours.
 - Flue gas emissions data taken and recorded by CEMS system.
- Day 3 January 29, 2004:

(cont'd)

- Unit load 60% load after completion of testing at 80% load turbine load set and maintained at approx. 180 MW.
- o Unit began 2-hour stabilization period at 180 MW at 2000 hours.
- Boiler performance testing commenced at 2200 hours after stabilization period completed: test completed at 0200 hours. Jan. 30, 2004.
- Flue gas emissions data taken and recorded by CEMS system.
- Day 4 January 30, 2004:
 - Unit load decreased to 40% load turbine load set and maintained at approx.
 120 MW.
 - Unit began 2-hour stabilization period at 120 MW at 1200 hours.
 - DCS failure tripped unit at approximately 1700 hours 40% load test postponed until January 31, 2004.
- Day 5 January 31, 2004:
 - Unit load set at 40% began stabilization period at 0700 hours.
 - Boiler performance testing began at 0900 hours after stabilization period completed; test completed at 1300 hours.
 - Flue gas emissions data taken and recorded by CEMS system.
 - This concluded the testing of JEA Northside Unit 2 firing the 50/50 blended coal.

Fuel Capability Demonstration Test Report #2 p-3 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

1.2 Abbreviations

Following is a definition of abbreviations used in this report. Note that at their first use, these terms are fully defined in the text of the report, followed by the abbreviation in the parenthesis. Subsequent references use the abbreviation only.

Abbreviation	Definition			
A.F.	As-Fired			
AQCS	Air Quality Control System			
BA	Bed Ash			
ВОР	Balance of Plant			
btu	British Thermal Unit			
С	Coal			
CaCO ₃	wt. fraction CaCO ₃ in limestone			
Ca:S	Calcium to Sulfur Ration			
CaO	Lime			
C _b	Pounds of carbon per pound of "as-fired" fuel			
CEMS	Continuous Emissions Monitoring System			
CFB	Circulating Fluidized Bed			
со	Carbon Monoxide			
CO ₂	Carbon Dioxide			
COMS	Continuous Opacity Monitoring System			
DAHS	Data Acquisition Handling System			
DCS	Distributed Control System			
DOE	Department of Energy			
F	Fluorine or Degrees Fahrenheit			
FA	Fly ash			
FF	Fabric Filter			
gpm	gallons per minute			
gr/acf	grains per actual cubic foot			

Fuel Capability Demonstration Test Report #2 p-4 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

Abbreviation	Definition				
gr/dscf	grains per dry standard cubic foot				
h _{#1DRN}	Enthalpy of drain from #1 heater				
h _{#1INFW}	BFW enthalpy at heater #1 inlet				
h _{#1OUTFW}	BFW enthalpy at heater #1 outlet				
H _{EXTR1}	Enthalpy of extraction to #1 heater				
Hg	Mercury				
HHV	Higher Heating Value				
HP	High-Pressure				
H _{CRH}	Cold reheat steam enthalpy at the boiler outlet, Btu/lb				
h _{FW}	Feedwater enthalpy entering the economizer, Btu/lb				
H _{HRH}	Hot reheat steam enthalpy at the boiler outlet, Btu/lb				
H _{MS}	Main steam enthalpy at the boiler outlet, Btu/lb				
L	Lime				
lb/hr	Pounds per hour				
lb/MMBtu	pounds per million Btu				
LS	Limestone				
MBtu	Million Btu				
MCR	Maximum Continuous Rating				
MgCO ₃	wt. fraction MgCO ₃ in limestone				
MU	Measurement Uncertainty				
MW _X	Molecular weight of respective elements				
NGS	Northside Generating Station				
NH ₃	Ammonia				
NO _x	Oxides of Nitrogen				
NS	Northside				
Pb	Lead				

Fuel Capability Demonstration Test Report #2 p-5 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

Abbreviation	Definition				
PC	Petroleum Coke				
pcf	pounds per cubic foot				
Pitt 8	Pittsburgh 8				
PJFF	Pulse Jet Fabric Filter				
РМ	Particulate Matter				
ppm	parts per million				
ppmdv	Pounds per million, dry volume				
psia	Pounds per square inch pressure absolute				
psig	pounds per square inch pressure gauge				
PTC	Power Test Code				
RH	Reheat				
S Capture _(AQCS)	Sulfur capture by the AQCS, %				
SDA	Spray Dryer Absorber				
S _f	Wt. fraction of sulfur in fuel, as-fired				
SH	Superheat				
SNCR	Selective Non-Catalytic Reduction				
SO ₂	Sulfur Dioxide				
SO _{2(inlet)}	SO ₂ in the AQCS inlet (lb/MBtu)				
SO _{2(stack)}	SO ₂ in the stack (lb/MBtu)				
SO ₃	Sulfur Trioxide				
TG	Turbine Generator				
tph	tons per hour				
voc	Volatile Organic Carbon				
Wi	Limestone feed rate (lb/hr)				
W _{EXTR1}	Extraction flow to heater #1				
W _{fe}	Fuel feed rate (lb/hr)				

Fuel Capability Demonstration Test Report #2 p-6 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

Abbreviation	Definition			
W _{FWH}	feedwater flow at heaters			
W _{MS}	Main steam flow, lb/hr			
W _{RH}	Reheat steam flow, lb/hr			
wt %	weight percentage			

JEA Tag Number Conventions are as follows:

AA-BB-CC-xxx

AA designates GEMS Group/System, as follows:

BK = Boiler Vent and Drains

QF = Feedwater Flow

SE = Reheat Piping

SH = Reheat Superheating

SI = Secondary Superheating

SJ = Main Street Piping

BB designates major equipment codes, as follows:

12 = Control Valve

14 = Manual Valve

34 = Instrument

CC designates instrument type, as follows:

FT = Flow transmitter

FI = Flow indicator

TE = Temperature element

xxx designates numerical sequence number

Fuel Capability Demonstration Test Report #2 p-7 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

2.0 SUMMARY OF TEST RESULTS

2.1 Test Requirements

The Protocol required that the following tests be performed and the results be reported at four (4) different unit loads:

- Unit Capacity, per cent (all capacities in Megawatts are gross MW).
- Boiler Efficiency, per cent (100 % load only).
- Main Steam and Reheat Steam Temperature, deg F.
- Emissions (NOx, SO2, CO, and Particulate (see Section 4.0 of this report).

No design performance data for the boiler firing the blended fuel were provided by Foster-Wheeler. For the purposes of this report, the results of the test were compared against the design performance data of the boiler produced by Foster-Wheeler, as follows:

Boiler efficiency (firing Pittsburgh 8 coal):

Boiler efficiency (firing Pet Coke):

Main steam flow at turbine inlet:

Main steam temperature at turbine inlet:

Main steam pressure at turbine inlet:

Hot reheat steam temperature at turbine inlet:

1,000 deg F

1,000 deg F

The average steam temperatures during the Test were compared with the limits described in the following sections (The average of the readings recorded every minute shall be determined to be the Test average):

- a. Main steam temperature 1000 °F +10/-0 °F at the turbine throttle valve inlet from 75 to 100% of turbine MCR and 1000 °F +/-10 °F at the turbine throttle valve inlet from 60 to 75% of turbine MCR.
- b. Hot reheat steam temperature 1000 °F +10/-0 °F at the turbine intercept valve inlet from 75 to 100% of turbine MCR and 1000 °F +/-10 °F at the turbine intercept valve inlet from 60 to 75% of turbine MCR.

2.2 Valve Line-Up Requirements

With the exception of isolating the blow down systems, drain and vent systems, and the soot blower system, the boiler was operated normally in the coordinated control mode throughout the boiler efficiency test period. Prior to the start of each testing period, a walk down was conducted to confirm the 'closed' position of certain main steam and feedwater system valves. A listing of these valves is included in Attachment F.

2.3 Test Results

The results of the 100% tests are summarized in Table 1. The results of the part-load tests are summarized in Table 2. The performance of the boiler met and/or exceeded all of the design values provided by Foster-Wheeler. Two and a half hours into the 80% MCR test, the A1 feeder tripped. The problem was fixed, the feeder was put back on line, and the unit was ramped back up to 80% load. The testing commenced at approximately 1600 hours after the unit was allowed

Fuel Capability Demonstration Test Report #2 p-8 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

to stabilize - no further equipment problems were observed or recorded. No further problems with the fuel feeding system were observed or recorded during the remainder of the part-load testing periods.

TABLE 1 - TESTS RESULTS - 100% LOAD

	Design Maximum- Continuous Rating (MCR)	January 27, 2004 Test (**corrected to MCR, see Note 4)	January 28, 2004 Test (**corrected to MCR, see Note 4)	
Boiler Efficiency (percent)	88.1 (Coal)	91.6 **(Note 1)	91.7 **(Note 1)	
	90.0 (Pet Coke)			
Capacity Calculation (percent)	NA	95.3	95.4	
Main Steam (Turbine Inlet)				
Flow (lb/hr)	1,993,591	1,848,031**	1,846,341**	
Pressure (psig)	2,500	2,401	2,401	
Temperature (°F)	1,000	1,002**	1,001**	
Reheat Steam (Turbine Inlet)				
Flow (lb/hr)	1,773,263	1,776,860	1,776,167	
Pressure (psig)	547.7	569.1	565.4	
Temperature (°F)	1,000	1,007**	1,008**	
Reheat Steam (HP Turbine Exhaust)				
Flow (lb/hr)	1,773,263	1,775,434	1,774,004	
Pressure (psig)	608.6	568.4	564.9	
Enthalpy (Btu/lb)	1,304.5	1,295.25	1,292.91	
Feedwater to Economizer				
Temperature (°F)	487.5	484.3	483.5	
50/50 Blend Fuel Analysis (As- Received)				
Carbon %	73.8	74.45	73.68	
Hydrogen %	4.1	4.4	4.6	
Sulfur %	5.0	5.34	5.86	
Nitrogen %	1.15	1.47	1.63	
Chlorine %	0.05	0.09	0.11	
Oxygen %	2.20	1.25	1.26	
Ash %	6.6	5.75	5.91	
Moisture %	7.1	7.34	7.05	
HHV (Btu/lb)	13,345	13,429	13,251	
Fuel Flow Rate (lb/hr)	NA	194,172	195,177	
Limestone Composition (% By Weight)				
CaCO3	92.0	91.4	86.4	
MgCO3	3.0	2.95	2.82	

Fuel Capability Demonstration Test Report #2 p-9 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

Design Maximum- Continuous Rating (MCR)		January 27, 2004 Test (**corrected to MCR, see Note 4)	January 28, 2004 Test (**corrected to MCR, see Note 4)
Inerts	4.0	5.15	10.43
Total Moisture	1.0	0.51	0.36
AQCS Lime Slurry Composition (% By Weight)			
CaO	85.0	46.77	47.03
MgO and inerts	15.0	53.23	52.97
AQCS Lime Slurry Density – % Solids	35	5.	23
Boiler Limestone Feedrate, lb/hr	66,056 (maximum value)	66,434	73,001
Flue Gas Emissions			
Nitrogen Oxides, NOx, Ib/MMBtu (HHV)	0.09	0.07	0.07
Uncontrolled SO2, lb/MMBtu (HHV) - based on 50/50 blend	7.49	7.95	8.845
Boiler Outlet SO2, lb/MMBtu (HHV) [See Note 3]	0.78	0.2026	0.2771
Stack SO2 lb/MMBtu, (HHV)	0.15	0.093	0.11
Solid Particulate matter, baghouse outlet, lb/MMBtu (HHV)	0.011	0.0	041
Carbon Monoxide, CO, lb/MMBtu (HHV)	0.22	0.015	0.016
Opacity, percent	10	1.01	1.80
Ammonia (NH3) Slip, ppmvd	2.0	0.3	325
Ammonia feed rate, gal/hr	NA	3.73	6.26
Lead, lb/MMBtu	2.60 x 10 ⁻⁵ (max)	8.22	x 10 ⁻⁷
Mercury (fuel and limestone), µg/g	NA	3.02	x 10 ⁻⁷
Mercury, lb/TBtu (at stack)	10.5 (max)	< 8.532 (s	see Note 2)
Total Mercury Removal Efficiency, percent	No requirement	Not U	Itilized
Fluoride (as HF), lb/MMBtu	1.57 x 10 ⁻⁴ (max)	1.69	x 10 ⁻⁵
Dioxins / Furans	No Limit	NOT T	ESTED

NOTE 1: Boiler efficiency includes a value of 0.112 % for unaccounted for losses (from Foster-Wheeler data).

NOTE 2: Refer to Section 4.3.4.1.

NOTE 3: Design boiler outlet SO2 emission rate based on 85% removal of SO2 in the boiler.

NOTE 4: Corrections to design MCR conditions were made in accordance with Section 6.2.1 of Attachment A, FUEL CAPABILITY DEMONSTRATION TEST PROTOCOL.

Fuel Capability Demonstration Test Report #2 p-10 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

TABLE 2 - BOILER & SDA SO2 REMOVAL EFFICIENCY

	Design Basis	January 27, 2004 Test	January 28, 2004 Test
Percent of total SO2 removed by boiler	85.0 typical, with range of 75 - 90	97.5	96.8
Doller	range or 75 - 90	91.5	30.0
Percent of total SO2 removed by SDA	12.1 typical, with range 22.1 – 7.1	1.3	1.9
Percent of Total SO2 Removed	97.1	98.8	98.7
Percent of SO2 entering SDA removed in SDA	81.0 typical with range 90 – 71	54	60.3
Boiler Calcium to Sulfur Ratio	< 2.88	1.7	2.25

TABLE 3 - TEST RESULTS - PARTIAL LOADS

	Day 3	Day 4	Day 5
Unit Capacity (MW)	240	180	120
Percent MCR Load	80%	60%	40%
Capacity Calculation (percent)	76.6	58.0	38.2
Total Main Steam Flow, lb/hr	1,442,226	1,049,633	715,464
Main Steam Temperature, deg F	1,004	993	997
Main Steam Pressure, psig	2,340	1,701	1,062
Cold Reheat Steam Temperature,	577.5	558.02	573.64
deg F			
Hot Reheat Steam Temperature,	1,006	1,011	999
deg F			
NOx, lb/MMBtu	0.04	0.043	0.033
CO, lb/MMBtu	0.024	0.0276	0.08
SO2, lb/MMBtu	0.08	0.067	0.109
Opacity, percent	1.4	1.1	0.8

- 2.3.1 <u>Unit Capacity</u> During the five (5) day testing period, the boiler was successfully operated at a turbine load of approximately 300 MW, for day 1 and day 2, and at partial turbine loads of approximately 240 MW, 180 MW, and 120 MW, for day 3, day 4, and day 5. The unit operated steadily at each of the stated loads without any deviation in unit output. Prior to each of the testing periods, the unit was brought to load and allowed to stabilize for two (2) hours prior to the start of each test.
- 2.3.2 <u>Boiler Efficiency</u> The steam generator operated at corrected efficiencies of 91.6 % and 91.7% on Day 1 and Day 2, respectively, of the testing period. These efficiencies exceeded the design values for firing coal by approximately 3.5 %, and by approximately 1.6% for firing pet coke.

Fuel Capability Demonstration Test Report #2 p-11 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

- 2.3.3 <u>Steam Temperature</u> During both days at 100% load operation, the average corrected main steam temperature measured at the turbine inlet was 1,001 deg F, which is within the design tolerances of the unit. Additionally, the corrected hot reheat steam temperature measured at the turbine inlet was 1,018 deg F, which is also within the design tolerances of the unit. During partial load operation, the main steam temperatures and the hot reheat temperatures were within the design tolerances previously listed in Section 2.1.
- 2.3.4 <u>Steam Production</u> The steam flows of the unit at the 100% load operation cases and partial load operation cases were each determined by adding the main steam desuperheating system flow rates to the feed water system flow rates, and subtracting the continuous blow down flow rates and the sootblowing steam flow rates. The data for each of these systems were retrieved from the plant information system database. The main steam flow rates were corrected for deviations from the design MCR feedwater temperature. Although the corrected main steam flow rates determined for the 100% load operation cases were less than the design flow rates established by Foster-Wheeler, the main steam flow rates were adequate to maintain the steam turbine at the desired plant output. The main steam flow rates at the partial load operation cases were adequate to maintain the steam turbine at the required output.
- 2.3.5 <u>Calcium to Sulfur Ratio (Ca:S)</u> The calcium to sulfur ratio represents the ability of the CFB boiler and limestone feed system to effectively remove the sulfur dioxide produced by the combustion process of the boiler. The maximum ratio established for firing the blended coal was 2.88. The calculated calcium to sulfur ratios for Day 1 and Day 2 are approximately 1.7 and 2.25, respectively. These values represent SO2 removal efficiencies for the boiler of greater than 95 % which are acceptable values for a CFB. SO2 reductions of greater than 90% are typically achieved in a CFB with Ca:S ratios of 2 to 2.5. These values are dependent on the sulfur content in the fuel and the reactivity of the limestone.

3.0 BOILER EFFICIENCY TESTS

The unit was operated at a steady turbine load of approximately 300 MW (100% MCR) for two (2) consecutive days as prescribed in Section 2 of the Attachment A Test Protocol. During these two days, data were recorded via the PI (Plant Information) System and were also collected by independent testing contractors. These data were then used to determine the unit's boiler efficiency. No significant operational restrictions were observed during testing at the 100% MCR condition.

3.1 Calculation Method

The boiler efficiency calculation method was based on a combination of the abbreviated heat loss method as defined in the ASME Power Test Code (PTC) 4.1, 1974, reaffirmed 1991, and the methods described in ASME PTC 4. The method was modified to account for the heat of calcination and sulfation within the CFB boiler SO2 capture mechanism. The methods have also been modified to account for process differences between conventional and fluidized bed boilers to account for the addition of limestone. These modifications account for difference in the dry gas quantity and the additional heat loss/gain due to calcinations / sulfation. A complete description of the modified procedures is included in Section 4.2 of Attachment A. Some of the heat losses included losses due to the heat in dry flue gas, unburned carbon in the bed ash and the fly ash, and the heat loss due to radiation and convection from the insulated boiler surfaces. A complete list of the heat losses can be found in Section 4.2.1 of Attachment A. The completed efficiency calculations are included in Attachment F to this report.

Fuel Capability Demonstration Test Report #2 p-12 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

3.2 Data and Sample Acquisition

During the tests, permanently installed plant instrumentation was used to measure most of the data which were required to perform the boiler efficiency calculations. The data were collected electronically utilizing JEA's Plant Information (PI) system. The data provided by the plant instrumentation is included in *Attachment D, PI Data Summary*. Additional data required for the boiler efficiency calculations were provided by two independent testing contractors, PGT/ESC, and Clean Air Engineering (CAE). A summary of this information is located in *Attachments G, H, I, J, and K, lab analyses provided by PGT/ESC for the fuel, limestone, bed ash, fly ash, and environmental data,* and *Attachment C, CAE Test Report,* respectively. As directed in the test protocol (Attachment A), test data for days 1 and 2 were taken and labeled by CAE and PGT. No flue gas sampling was performed on the unit during operations at reduced loads. Data were, however, recorded by the CEMS system and are reported in this document.

The majority of the data utilized in the boiler efficiency calculation and sulfur capture performance, such as combustion air and flue gas temperatures and flue gas oxygen content, were stored and retrieved by the plant information system, as noted above. Data for the as-fired fuel, limestone, and resulting bed ash, fly ash, and exiting flue gas constituents were provided via laboratory analyses. Samples were taken in the following locations by PGT and forwarded to a lab for analysis. (Refer to Figures 1 thru 6 for approximate locations).

Lime (Figure 1):

Lime slurry samples were taken from the sample valve located on the discharge of the lime slurry transfer pump. This valve is located in the AQCS Spray Dryer Absorber (SDA) pump room.

Fly Ash (Figures 2, 3, and 4):

Fly Ash samples were taken by two different methods.

- Fly ash was taken by isokinetic sampling at the inlet to the SDA. These samples were taken
 to determine ash loading rates and also obtain samples for laboratory analysis of ash
 constituents.
- 2) Fly ash was also taken by grab sample method in two different locations. One grab sample was taken ever hour at a single air heater outlet hopper and another grab sample at a single bag house fabric filter hopper.

Fuel (Figures 4, 5, and 6):

Fuel samples were taken from the sample port at the discharge end of each gravimetric fuel feeder. The fuel samples were collected using a coal scoop inserted through the 4 inch test port at each operating fuel conveyor.

<u>Limestone (Figures 4 and 6):</u>

Limestone samples were taken from the outlet of each operating limestone rotary feeder. The samples were collected using a scoop passed into the flow stream of the 4 inch test ball valve in the neck of each feeder outlet.

Bed Ash (Figure 6):

Bed Ash samples were taken from each of the operating stripper cooler rotary valve outlets. The samples were taken by passing a stainless steel scoop through the 4 inch test port at each operating stripper cooler.

Fuel Capability Demonstration Test Report #2 p-13 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

As instructed by the Test Protocol, all of the samples were labeled and transferred to a lab for analysis. The average values were determined and used as input data for performing the boiler efficiency calculation. The results of the lab analyses are included in Attachments G, H, I, and J.

4.0 AQCS INLET AND STACK TESTS

4.1 System Description

The Unit 2 AQCS consists of a single, lime-based spray dryer absorber (SDA) and a multi-compartment pulse jet fabric filter (PJFF). The SDA has sixteen independent dual-fluid atomizers. The fabric filter has eight isolatable compartments. The AQCS system also uses reagent preparation and byproduct handling subsystems. The SDA byproduct solids/fly ash collected by the PJFF is pneumatically transferred from the PJFF hoppers to either the Unit 2 fly ash silo or the Unit 2 AQCS recycle bin. Fly ash from the recycle bin is slurried and reused as the primary reagent by the SDA spray atomizers. The reagent preparation system converts quicklime (CaO), which is delivered dry to the station, into a hydrated lime [Ca(OH)2] slurry, which is fed to the atomizers as a supplemental reagent.

4.2 Unit Emissions Design Points

The following sections describe the desired emissions design goals of the unit. The tests were conducted in accordance with standard emissions testing practices and test methods as listed in Section 4.2.7. It should be noted that not all tests conducted fit exactly the 4 hour performance test period that was the basis of the fuel capability demonstration test. Several of the tests (especially those not based on CEMS) had durations that were different than the 4 hour performance period due to the requirements of the testing method and good engineering/testing practice. All sampling tests were done at the 100% load case only. All data at the 100%, 80%, 60% and 40% performance load tests were collected by the CEMS.

4.3 Emission Design Limits and Results

4.3.1 NOx / SO2 / Particulate Emission Design Limits / Results

The following gaseous emissions were measured for each 4-hour interval during the Test (EPA Permit averaging period).

- a. **Nitrogen oxides** (NOx) values in the flue gas as measured in the stack were expected to be less than 0.09 lb/MMBtu HHV fuel heat input. The hourly average lb/MMBtu values reported by the Continuous Emissions Monitoring system (CEMS) were used as the measure of NOx in the flue gas over the course of each fuel test. The average NOx values for Day 1 and Day 2, based on HHV, were 0.07 lb/MMBtu and 0.07 lb/MMBtu, respectively. Both of these values were less than the expected maximum value.
- b. Sulfur dioxide (SO2) The design operating condition of the unit is to remove 85 percent of the SO2 in the boiler, with the balance to make the permitted emission rate removed in the SDA. Burning performance coal with a boiler SO2 removal efficiency of 85%, the SO2 concentration at the air heater outlet was expected to be 1.12 lb/MMBtu, with an uncontrolled SO2 emission rate (at 0% SO2 removal) calculated to be 7.49 lb/MMBtu. JEA has chosen to operate at a much higher boiler SO2 removal rate than design. Part of the reason for this operating mode is that reliability of the limestone feed system during and after the startup period was inadequate, resulting in a substantial number of periods

Fuel Capability Demonstration Test Report #2 p-14 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

with excess SO2 emissions. Over time the operations group has learned that if limestone feed is higher than normally desired the likelihood of excess emissions during an upset is reduced. Additionally, control of the AQCS slurry density at the desired density levels has been difficult due to some instrumentation and control issues that are not completely resolved yet. Modifications to increase the reliability and consistency of limestone feed are scheduled to be complete in late 2005, which should permit a change toward lower boiler SO2 removal and increased SDA removal.

The SO2 concentration at the SDA inlet was measured by an independent test contractor, Clean Air Engineering (CAE). These results are included in Attachment C. The average SO2 values for Day 1 and Day 2, based on HHV of the fuel, out of the air heaters and into the SDA, were 0.093 lb/MMBtu and 0.11 lb/MMBtu, respectively. Both of these values were below the expected outlet emission rate. In fact, the boiler removed 98.8% and 98.7% respectively, in comparison to the design removal rate of 85%. Uncontrolled SO2 emissions rates were calculated to be 7.95 lb/MMBtu and 8.845 lb/MMBtu, respectively, for an increased SO2 input of 6.1% and 18.1% above the design performance coal SO2 input of 7.49 lb/MMBtu.

The SO2 emissions from the stack during the execution of the tests were expected to be less than 0.15 lb/MMBtu. The hourly average lb/MMBtu values (based on HHV of the fuel) reported by CEMS were used as the measure of SO2 emissions from the stack for the test. The average SO2 values for Day 1 and Day 2, (based on HHV of the fuel) were 0.102 lb/MMBtu and 0.106 lb/MMBtu, respectively. These values were 32% and 29% lower than the 0.15 lb/MMBtu permitted emission rate.

b. Solid particulate matter in the flue gas at the fabric filter outlet was expected to be maintained at less than 0.011 lb/MMBtu HHV fuel heat input. These values were measured at the stack by CAE. The average particulate matter value for the testing period was 0.004 lb/MMBtu which is below the expected maximum value.

4.3.2 CO Emissions Design Point

Carbon monoxide (CO) in the flue gas was expected to be less than or equal to 0.22 lb/MMBtu HHV fuel heat input at 100% MCR. This sample was measured at the stack by the plant CEMS. The average values for Day 1 and Day 2 were 0.015 lb/MMBtu and 0.016 lb/MMBtu, respectively. The average values were less than the maximum expected value.

4.3.3 SO3 Emissions Design Point

Sulfur Trioxide (SO3) in the flue gas was assumed to be zero due to the high removal efficiency of the SDA. No testing was done for SO3 as explained in the Test Protocol located in Attachment A. See Section 4.2.3 of the Fuel Capability Test Protocol for the rationale.

4.3.4 NH3/ Lead/ Mercury/ Fluorine Emissions Design Points

NH3, Lead, Mercury, and Fluorine gaseous emissions were measured during the Test (EPA Permit averaging period). Mercury sampling and analysis was performed at the inlet to the AQCS system in addition to the samples taken at the stack. Both samples were taken by CAE. Lead, ammonia and Fluorine were sampled only at the stack by CAE. The average values are indicated in Table 1.

Fuel Capability Demonstration Test Report #2 p-15 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

4.3.4.1 Mercury Testing Anomaly

During the emissions tests, the reagent used in the fourth impinger of the Ontario Hydro sampling train was a 5% HNO3 (nitric acid) / 10% H2O2 (hydrogen peroxide) solution. Mercury levels in both the 5% / 10% reagent blank and the 5% / 10% portion of the field train blanks were elevated. The mercury concentration in the reagent field blanks of the other solutions (KCI, potassium chloride, and KMnO4, potassium permanganate) used in the Ontario Hydro sampling train was at the expected levels or below the detection limit. In accordance with the Ontario Hydro Method, the allowable blank adjustments have been made to the final results presented.

A review of the total mercury in the coal was completed for comparison to measured values. The coal analyses indicated a mercury content of approximately $0.003~\mu g/g$, with a limestone mercury content of $0.03~\mu g/g$. This is equivalent to a total mercury content of 0.0007~lb/hr. This represents more mercury than what was measured by the independent test contractor at the inlet to the SDA. However due to the bias adjustment made by the independent test contractor, the removal efficiency was lower than expected. Subsequent tests should help determine the expected mercury removal efficiency of the unit.

4.3.5 Dioxin and Furan Emissions Design Points

Dioxin and Furan gaseous emissions testing were not required for evaluation of the blended coal.

4.3.6 Opacity

The opacity was measured by the plant CEMS/COMS (Continuous Opacity Monitoring System) to determine the opacity of the unit over a six minute block average during the test period. The maximum expected opacity was 10%. The testing indicated that the maximum opacity of the unit during the two day test was 1.8%, which is much less than the maximum opacity value.

4.4 Flue Gas Emissions Test Methods

The emissions test methods used for the demonstration test were based upon utilizing 40 CFR 60 based testing methods or the plant CEMS. The emissions tests were conducted by CAE. The following test methods were utilized:

- Particulate Matter at SDA Inlet USEPA Method 17
- Particulate Matter at Stack USEPA Method 5
- Oxides of Nitrogen at Stack Plant CEMS
- Sulfur Dioxide at SDA Inlet USEPA Method 6C
- Sulfur Dioxide at Stack Plant CEMS
- Carbon Monoxide at Stack Plant CEMS
- Ammonia at Stack CTM 027
- Lead at Stack USEPA Method 29
- Mercury at SDA Inlet Ontario Hydro Method
- Fluorine at Stack USEPA Method 13B
- Dioxin/Furans PCDD/F

Specific descriptions of the testing methods (non-CEMS) are included in the Clean Air Engineering Emissions Test Report located in Attachment D of this document.

Fuel Capability Demonstration Test Report #2 p-16 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

4.5 Continuous Emission Monitoring System

The plant CEMS was utilized for measurement of gaseous emissions as a part of the fuel capability demonstration and as listed in Section 4.2.7. The CEMS equipment was integrated by KVB-Entertec (now GE Energy Systems). The system is a dilution extractive system consisting of Thermo Environmental NOX, SO2, and CO2 analyzers. The data listed for CEMS in Section 4.2.7 originated from the certified Data Acquisition Handling System (DAHS).

Fuel Capability Demonstration Test Report #2 p-17 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

Attachments

Attachment A - Fuel Capability Demonstration Test Protocol

Attachment B - Boiler Efficiency Calculation

Attachment C - CAE Test Report

Attachment D - PI Data Summary

Attachment E - Abbreviation List

Attachment F - Isolation Valve List

Attachment G - Fuel Analyses - 50/50 Blend Pet Coke and Pittsburgh 8 Coal

Attachment H - Limestone Analyses

Attachment I - Bed Ash Analyses

Attachment J - Fly Ash (Air Heater and PJFF) Analyses

Attachment K - Ambient Data, Jan. 27, 2004 and Jan. 28, 2004

Attachment L - Ambient Temperatures, Jan. 29, 2004, Jan. 30, 2004, and Jan. 31, 2004

Fuel Capability Demonstration Test Report #2 - ATTACHMENTS 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

ATTACHMENT A

Fuel Capability Demonstration Test Protocol

This Document is located via the following link:

http://www.netl.doe.gov/cctc/resources/pdfs/jacks/FCTP.pdf

Fuel Capability Demonstration Test Report #2 - ATTACHMENTS 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

ATTACHMENT B Boiler Efficiency Calculation

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend) Boiler Efficiency: 91.64

Test Date: January 27, 2004
Test Start Time: 11:30 AM
Test End Time: 3:30 PM
Test Duration, hours: 4

DATA INPUT SECTION - INPUT ALL DATA REQUESTED IN SECTION 1 EXCEPT AS NOTED

1. DATA REQUIRED FOR BOILER EFFICIENCY DETERMINATION

AS - TESTED

	4	Average Value	Units	Symbol
1.1 Fuel	-	trorago raido	<u> </u>	<u>5,111501</u>
1.1.1	Feed Rate, lb/h	194,172	lb/h	Wfe - Summation feeder feed rates - FN-34-FT-508, 528, 548, 568, 588, 608, 628, 668
	Composition ("as fired")			
1.1.2	Carbon, fraction		lb/lb AF fuel	Cf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.3	Hydrogen, fraction		lb/lb AF fuel	Hf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.4	Oxygen, fraction		lb/lb AF fuel	Of - Laboratory analysis of coal samples obtained by grab sampling.
1.1.5	Nitrogen, fraction		lb/lb AF fuel	Nf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.6	Sulfur, fraction		lb/lb AF fuel	Sf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.7	Ash, fraction		lb/lb AF fuel	Af - Laboratory analysis of coal samples obtained by grab sampling.
1.1.8	Moisture, fraction		lb/lb AF fuel	H2Of - Laboratory analysis of coal samples obtained by grab sampling.
1.1.9	Calcium, fraction	0.0000	lb/lb AF fuel	Caf - Laboratory analysis of coal samples obtained by grab sampling - assume a value of zero if not reported.
1.1.10	HHV	13,429	Btu/lb	HHV - Laboratory analysis of coal samples obtained by grab sampling.
1.2 Limestone				
1.2.1	Feed Rate, lb/h	66,434	lb/h	Wle - Summation feeder feed rates - 2RN-53-010-Rate, 011, 012
	Composition ("as fired")			
1.2.2	CaCO3, fraction	0.9140	lb/lb limestone	CaCO3I - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.3	MgCO3, fraction		lb/lb limestone	MgCO3I - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.4	Inerts, fraction		lb/lb limestone	II - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.5	Moisture, fraction		lb/lb limestone	H2OI - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.6	Carbonate Conversion, fraction	0.8462		XCO2 - Laboratory analysis of limestone samples obtained by grab sampling - assume value of 1 if not reported
1.2.0	Carbonate Conversion, naction	0.0402		XOO2 - Laboratory analysis or infrestoric samples obtained by grab sampling - assume value or 1 in not reported
1.3 Bottom Ash				
1.3.1	Temperature, °F at envelope boundary Composition	0	°F	tba - Plant instrument.
1.3.2		0.0003	lb/lb BA	Charles Laboratory analysis of bottom cab complex obtained by grab compling
	Organic Carbon, wt fraction			Cbao - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.3	Inorganic Carbon, wt fraction		Ib/Ib BA	Chain - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.4	Total Carbon, wt fraction - CALCULATED VALUE DO NOT ENTER		lb/lb BA	Cba = Cbao + Cbaio
1.3.5	Calcium, wt fraction		lb/lb BA	Caba - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.6	Carbonate as CO2, wt fraction		lb/lb BA	CO2ba - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.7	Bottom Ash Flow By Iterative Calculation - ENTER ASSUMED VALUE TO BEGIN CALCULATION	42,543 ON	lb/h	Wbae
1.4 Fly Ash				
,	Composition			
1.4.1	Organic Carbon, wt fraction	0.0169	lb/lb FA	Cfao - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.2	Inorganic Carbon, wt fraction		lb/lb FA	Cfaio - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.3	Carbon, wt fraction - CALCULATED VALUE DO NOT ENTER		lb/lb FA	Cfa = Cfao + Cfaio
1.4.4	Calcium, wt fraction		lb/lb FA	Cafa - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.5	Carbonate as CO2, wt fraction		lb/lb FA	CO2fa - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.6	Fly Ash Flow		LB/HR	Wfam - Weight of fly ash from isokenetic sample collection.
4.5.0	- A!			
1.5 Combustion				
	Primary Air			
	Hot			W. State of the st
1.5.1	Flow Rate, lb/h	1,761,691		Wpae - Plant instrument.
1.5.2	Air Heater Inlet Temperature, °F	108	°F	tpa
	Cold			
1.5.3	Flow Rate, lb/h	53	LB/HR	
1.5.4	Fan Outlet Temperature, °F	108	°F	
	Secondary Air			
1.5.5	Flow Rate, lb/h	755,011	lb/h	Wsae - Plant instrument.
1.5.6	Air Heater Inlet Temperature, °F	110		tsa
	Intrex Blower			
1.5.7	Flow Rate, lb/h	35,790	lh/h	Wib - Plant instrument
1.5.8	Blower Outlet Temperature, oF	166	-F	tib
	Seal Pot Blowers			
1.5.9	Flow Rate, lb/h	44706		Wspb - Plant instrument
1.5.10	Blower Outlet Temperature, oF	178	°F	tspb

Boiler Efficiency: 91.64

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)
Test Date: January 27, 2004
Test Start Time: 11:30 AM
Test End Time: 3:30 PM

Test Duration, hours: 4

1.6 Ambien	t Conditions			
1.6.1	Ambient dry bulb temperature, °F	64.24	°F	ta
1.6.2	Ambient wet bulb temperature, °F	57.96		tawb
1.6.3	Barometric pressure, inches Hq		inches Hg	Patm
1.6.4	Moisture in air, lbH2O/lb dry air	0.0087	lbH2O/lb dry air	Calculated: H2OA - From psychometric chart at temperatures ta and tawb adjusted to test Patr
1.7 Flue Ga	ıs			
	At Air Heater Outlet			
1.7.1	Temperature (measured), °F	304.70	°F	Tg15 - Weighted average from AH outlet plant instruments (based on PA and SA flow rates)
1.7.2	Temperature (unmeasured), °F	5515	•	Calculated
1.7.2				Calculated
470	Composition (wet)	0.0450		00 W. H. L
1.7.3	02	0.0450		O2 - Weighted average from test instrument
1.7.4	CO2	Not Measured	percent volume	CO2
1.7.5	CO	Not Measured	percent volume	CO
1.7.6	SO2	Not Measured	percent volume	SO2
	At Air Heater Inlet			
1.7.7	Temperature, °F	574.12	°F	tG14 - Plant Instrument
	Composition (wet)	374.12	•	
1.7.8	O2	0.0360	porcont volume	
			percent volume	
1.7.9	CO2		percent volume	
1.7.10	CO		percent volume	
1.7.11	SO2	0.0027	percent volume	measurement is in ppm
	CEM Sample Extraction At Outlet Of Economizer			
	Composition			
1.7.12	O2, percent - WET basis	3.600	percent volume	O2stk
1.7.13	SO2, ppm - dry basis	114.9	ppm	SO2stk
1.7.14	NOx, ppm - dry basis	Not Measured	ppm	Noxstk
1.7.15	CO, ppm - dry basis	Not Measured		Costk
1.7.16	Particulate, mg/Nm³		mg/Nm³ - 25° C	PARTstk
1.7.10	Particulate, mg/Nm	NOL Measured	mg/mm25 C	PARISIK
1.8 Feedwa	iter			
1.8.1	Pressure, PSIG	1533.2	PSIG	pfw - Plant instrument.
1.8.2	Temperature, °F	484.3	°F	tfw - Plant instrument.
1.8.3	Flow Rate, lb/h	1,828,819		FW - Plant instrument.
4.0.0	Plans Dans			
1.9 Continu	uous Blow Down Pressure, PSIG (drum pressure)	2.561.5	DSIC	pbd - Plant instrument
1.9.2		673.7		
	Temperature, °F (sat. temp. @ drum pressure)			tba - Saturated water temperature from steam table at drum pressure.
1.9.3	Flow Rate, lb/h	0.00	lb/h	BD - Estimated using flow characteristic of valve and number of turns open.
1.10 Sootbl	lowing			
1.10.1	Flow Rate, LB/HR	0.00	LB/HR	SB - Plant instrument
1.10.1	Pressure, PSIG		PSIG	psb - Plant instrument
1.10.3	Temperature, F	0.00	r	tsb - plant instrument
1.11 Main S	Steam Desuperheating Water			
1.11.1	Pressure, PSIG	2,700.6	PSIG	pdsw - Plant instrument.
1.11.2	Temperature, °F	303.0	°F	tdsw - Plant instrument.
1.11.3	Flow Rate, lb/h	19,086		DSW - Plant instrument.
4 42 Mai - 0	Manus			
1.12 Main S			DOLO	Planting and a second a second and a second
1.12.1	Pressure, PSIG (superheater outlet)	2,400.7		pms - Plant instrument.
1.12.2	Temperature, °F	1,003.5		tms - Plant instrument.
1.12.3	Flow Rate, lb/h	1,847,905	lb/h	MS - Plant instrument - Not required to determine boiler efficiency - For information only.
1.13 Rehea	t Steam Desuperheating Water			
1.13.1	Pressure, PSIG	713.66	PSIG	pdswrh - Plant instrument.
1.13.1	Temperature, °F	300.87		tdswrh - Plant instrument.
1.13.2	Flow Rate, lb/h	1,426		DSWrh - Plant instrument.
	rate, ibiri	1,420	/11	201111 Fait modulion.
1.14 Rehea				
1.14.1	Inlet Pressure, PSIG	568.42		prhin - Plant instrument.
1.14.2	Inlet Temperature, °F	604.01	°F	trhin - Plant instrument.
1.14.3	Outlet Pressure, PSIG	569.12		prhout - Plant instrument.
	Outlet Temperature. °F	1.007.48		trhout - Plant instrument.
1.14.4		1,007.40		
1.14.4 1.14.5	Inlet Flow, LB/HR	1,775,313		RHin - From turbine heat.

Jacksonville Electric Authority

Northside Unit 2 - Test #2 (50/50 Blend) Unit Tested:

Test Date: January 27, 2004 Test Start Time: 11:30 AM Test End Time: 3:30 PM Test Duration, hours: 4

Boiler Efficiency: 91.64

CALCULATION SECTION - ALL VALUES BELOW CALCULATED BY EMBEDDED FORMULAS - DO NOT ENTER DATA BELOW THIS LINE -**EXCEPT ASSUMED VALUES FOR ITERATIVE CALCULATIONS**

2. REFERENCE TEMPERATURES

2.1 Average Air Heater Inlet Temperature

109.29

3. SULFUR CAPTURE

The calculation of efficiency for a circulating fluid bed steam generator that includes injection of a reactive sorbent material, such as limestone, to reduce sulfur dioxide emissions is an iterative calculation to minimize the number of parameters that have to be measured and the number of laboratory material analyses that must be performed. This both reduces the cost of the test and increases the accuracy by minimizing the impact of field and laboratory instrument inaccuracies.

To begin the process, assume a fuel flow rate. The fuel flow rate is required to complete the material balances necessary to determine the amount of limestone used and the effect of the limestone reaction on the boiler efficiency. The resulting boiler efficiency is used to calculate a value for the fuel flow rate. If the calculated flow rate is more than 1 percent different than the assumed flow rate, a new value for fuel flow rate is selected and the efficiency calculation is repeated. This process is repeated until the assumed value for fuel flow and the calculated value for fuel flow differ by less than 1 percent of of the value of the calculated fuel flow rate.

		ΔTF lh/h

182,495 lb/h

3.2 ASSUMED SULFUR EMISSIONS, fraction

0.0295 fraction 0.9705

Can get reading from CEMS system

al = (CaCO3I * (56.0794/100.08935)) + ((CaCO3I/CaS) * (80.0622/100.08935) * XSO2) +

WIe = ((Wfea * af * ((Caf - (Cafa/(1 - Cfai)))) + Wbae' * (1 - Cba') * ((Cafa/(1 - Cfa)) - Caba))/((Cafa/(1 - Cfai)))

3.3 Sulfur Capture, fraction

4. ASH PRODUCTION AND LIMESTONE CONSUMPTION

4.1 Accumulation of Bed Inventory

0 lb/h

4.2 Corrected Ash Carbon Content

0.0003 lb/lb BA

422 Fly Ash, fraction 0.0169 lb/lb FA

4.3 Bottom Ash Flow Rate

421

Total bottom ash including bed change 431

Bottom Ash, fraction

42,543.0267140 lb/h

4.4 Limestone Flow Rate

Iterate to determine calcium to sulfur ratio and limestone flow rate. Enter an assumed value for the calcium to sulfur ratio. Compare resulting calculated calcium to sulfur ratio to assumed value. Change assumed value until the difference between the assumed value and the calculated value is less than 1 percent of the assumed value.

441	ASSUMED CALCIUM to SULFUR RATIO

1.9940 mole Ca/mole S

4.4.2 Solids From Limestone - estimated 0.933458109 lb/lb limestone

4.4.3 Limestone Flow Rate - estimated 4.4.4 Calculated Calcium to Sulfur Ratio

66434 lb/h 1.993961966 mole Ca/mole S

I Imestone Flow Rate from PI Data, Ib/h 4.4.5 Difference Estimated vs Assumed - Ca:S

66 434

4.4.6

-1.65859E-05 percent

Calculated Fly Ash Flow Rate

30.492 lb/h

4.4.7 Difference Calculated vs Measured

0.0000582144 percent

4.5 Total Dry Refuse

4.5.1 Total Dry Refuse Hourly Flow Rate Total Dry Refuse Per Pound Fuel 4.5.2

73,035 lb/h 0.4002 lb/lb AF fuel

4.6 Heating Value Of Total Dry Refuse

4.6.1 Average Carbon Content Of Ash Heating Value Of Dry Refuse 4.6.2

0.0072 fraction 104.84 Btu/lb

5. HEAT LOSS DUE TO DRY GAS

5.1 Carbon Burned Adjusted For Limestone

5.1.1 Carbon Burned 0.7416 lb/lb AF fuel 5.1.2 Carbon Adjusted For Limestone 0.7767 lb/lb AF fuel Jacksonville Electric Authority

Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)

January 27, 2004 11:30 AM Test Date: Test Start Time: Test End Time: 3:30 PM Test Duration, hours: 4

Boiler Efficiency: 91.64

Determine Amount Of Flue Gas

Iterate to determine carbon dioxide volumetric content of dry flue gas. Enter an assumed value for excess air.

Compare resulting calculated oxygen content to the measure oxygen content. Change assumed value of excess air until the difference between the calculated oxygen content value and the measured value oxygen content value is less than 1 percent of the assumed value.

Use the calculated carbon dioxide value in subsequent calculations.

5.2 Air Heater Outlet

5.2.1	ASSUMED EXCESS AIR at AIR HEATER OUTLET	27.984	percent	00.111./01.0000/00.0145/1401./05.0001/0.04501/1417./01.0000/00.001/1407.011/
5.2.2	Corrected Stoichiometric O2, lb/lb fuel	2.3786	lb/lb AF fuel	O2stoich = (31.9988/12.01115) * Cb + (15.9994/2.01594) * Hf + (31.9998/32.064) * Sf - Of + (((Sf * 31.9988/32.064) * (XSO2) * 31.9988 * 0.5/64.0128)
5.2.3	Corrected Stoichiometric N2, lb/lb fuel		lb/lb AF fuel	······································
5.2.4	Flue Gas Composition, Weight Basis, lb/lb AF Fuel			
5.2.4.1	Carbon Dioxide, weight fraction	2.8459	lb/lb AF fuel	
5.2.4.2	Sulfur Dioxide, weight fraction		lb/lb AF fuel	
5.2.4.3	Oxygen from air less oxygen to sulfur capture, weight fraction	0.6398	lb/lb AF fuel	
5.2.4.4	Nitrogen from air, weight fraction		lb/lb AF fuel	
5.2.4.5	Nitrogen from fuel, weight fraction		lb/lb AF fuel	
5.2.4.6	Moisture from fuel, weight fraction		lb/lb AF fuel	
5.2.4.7	Moisture from hydrogen in fuel, weight fraction		lb/lb AF fuel	
5.2.4.8	Moisture from limestone, weight fraction		lb/lb AF fuel	
5.2.4.9	Moisture from combustion air, weight fraction		lb/lb AF fuel	
	modulo nom compaction an, moight naction			
5.2.5	Weight of DRY Products of Combustion - Air Heater OUTLET	13.6151	lb/lb AF fuel	MWahoutdry = Wqcalc/((CO2calc/44.0095) + (SO2calc/64.0629) + (O2calc/31.9988) + (N2acalc/28.161) +
5.2.6	Molecular Weight, Ib/lb mole DRY FG - Air Heater OUTLET	30.6442	lb/lb mole	(Nf/28.0134))
				<i>"</i>
5.2.7	Weight of WET Products of Combustion - Air Heater OUTLET	14.1977	lb/lb AF fuel	
5.2.8	Molecular Weight, lb/lb mole WET FG - Air Heater OUTLET	29.7873	lb/lb AF fuel	$\label{eq:mwahoutwet} $$ MWahoutwet = Wgcalc/((CO2calc/44.0095) + (SO2calc/64.0629) + (O2calc/31.9988) + (N2acalc/28.161) + (Mf/28.0134) + (H2Ohf + H2Ohf + H2Ohf + H2Ohf) +$
5.2.9	Dry Flue Gas Composition, Volume Basis, % Dry Flue Gas			
5.2.9.1	Carbon Dioxide, volume percent	14.5543	percent volume	
5.2.9.2	Sulfur Dioxide, volume percent		percent volume	
5.2.9.3	Oxygen from air, volume percent	4.5000	percent volume	
5.2.9.4	Nitrogen from air, volume percent	80.8166	percent volume	
5.2.9.5	Nitrogen from fuel, volume percent	0.1180	percent volume	
		100.0000	percent volume	
5.2.10	Oxygen - MEASURED AT AIR HEATER OUTLET, $\%$ vol - dry FG	4.5	percent	
5.2.11	Difference Calculated versus Measured Oxygen At Air Heater Outlet	0.00085028	percent	
5.2.12	Carbon Dioxide, DRY vol. fraction	0.1455		
5.2.13	Nitrogen (by difference), DRY vol. fraction	0.8095		
5.2.14	Weight Day FC At Air Heater OUTLET	12 5672	lb/lb AF fuel	
5.2.14	Weight Dry FG At Air Heater OUTLET	13.3672	ID/ID AF IUEI	
5.2.15	Molecular Weight Of Dry Flue Gas At Air Heater OUTLET	30.6385	lb/lb mole	
5.2.16	Wet Flue Gas Composition, Volume Basis, % Wet Flue Gas			
5.2.16.1	Carbon Dioxide, volume percent	13.5668	percent volume	
5.2.16.2	Sulfur Dioxide, volume percent		percent volume	
5.2.16.3	Oxygen from air, volume percent		percent volume	
5.2.16.4	Nitrogen from air, volume percent	75.3330		
5.2.16.5	Nitrogen from fuel, volume percent		percent volume	
5.2.16.6	Moisture from fuel, fuel hydrogen, limestone, and air	6.7853		H2O%out = (((H2Of + H2Oh2 + H2Ol/f + H2Oair)/18.01534) *
			•	(100)/(Wgcalcahoutwet/MWahoutwet)
		100.0000		
5.2.17	Weight Wet FG At Air Heater OUTLET	14.1498	lb/lb AF fuel	
5.2.18	Molecular Weight Of Wet Flue Gas At Air Heater OUTLET	29.7794	lb/lb mole	

Jacksonville Electric Authority Northside Unit 2 - Test #2 (50/50 Blend) Boiler Efficiency: 91.64 Unit Tested: Test Date: January 27, 2004 Test Start Time: 11:30 AM Test End Time: 3:30 PM Test Duration, hours: 4 5.2.19 Weight Fraction of DRY Flue Gas Components 5.2.19.1 0.0470 fraction Oxygen, fraction weight 5.2.19.2 Nitrogen, fraction weight 0.7440 fraction 5.2.19.3 Carbon Dioxide, fraction weight 0.2090 fraction 5.2.19.4 Carbon Monoxide, fraction weight 0.0000 fraction 5.2.19.5 Sulfur Dioxide, fraction weight 0.0000 fraction Weight Fraction of WET Flue Gas Components -NOT USED IN CALCULATION 5.2.20 Oxygen, fraction weight fraction 5.2.20.1 5.2.20.2 Nitrogen, fraction weight fraction 5.2.20.3 Carbon Dioxide, fraction weight fraction Carbon Monoxide, fraction weight fraction 5 2 20 4 5.2.20.5 Sulfur Dioxide, fraction weight fraction 5.2.20.6 Moisture, fraction weight fraction 5.3 Air Heater Inlet ASSUMED EXCESS AIR at AIR HEATER INLET 5.3.1 21.489 percent 5.3.2 Flue Gas Composition, Weight Basis, lb/lb AF Fuel 5.3.2.1 Carbon Dioxide, weight fraction 2.8459 lb/lb AF fuel 0.0031 lb/lb AF fuel 5.3.2.2 Sulfur Dioxide, weight fraction 5.3.2.3 Oxygen from air less oxygen to sulfur capture, weight fraction 0.4853 lb/lb AF fuel 9.5984 lb/lb AF fuel 5.3.2.4 Nitrogen from air, weight fraction Nitrogen from fuel, weight fraction 0.0147 lb/lb AF fuel 5.3.2.5 5.3.2.6 Moisture from fuel, weight fraction 0.0734 lb/lb AF fuel 5.3.2.7 Moisture from hydrogen in fuel, weight fraction 0.3931 lb/lb AF fuel 5.3.2.8 Moisture from limestone, weight fraction 0.0019 lb/lb AF fuel 0.1085 lb/lb AF fuel 5329 Moisture from combustion air, weight fraction Weight of DRY Products of Combustion - Air Heater INLET 5.3.3 12.9474 lb/lb AF fuel Molecular Weight, Ib/lb mole DRY FG - Air Heater INLET 30.7361 lb/lb mole 534 Weight of WET Products of Combustion - Air Heater INLET 13.5242 lb/lb AF fuel 5.3.5 29.8375 lb/lb AF fuel 536 Molecular Weight, lb/lb mole WET FG - Air Heater INLET Volume Basis % Dry Flue Gas 5.3.7 Flue Gas Composition, Volume Basis, % DRY Flue Gas 15.3508 percent volume 5.3.7.1 Carbon Dioxide, volume percent 5.3.7.2 Sulfur Dioxide, volume percent 0.0117 percent volume 3.6000 percent volume 5.3.7.3 Oxygen from air, volume percent Nitrogen from air, volume percent 80.9131 percent volume 5.3.7.4 5.3.7.5 Nitrogen from fuel, volume percent 0.1245 percent volume 100.0000 percent volume 5.3.8 Oxygen - MEASURED AT AIR HEATER INLET, % vol - dry FG 3.6 percent 5.3.9 Difference Calculated versus Measured Oxygen At Air Heater Inlet 0.000304142 percent 5.3.10 Carbon Dioxide, DRY vol. fraction 0.1535 Nitrogen (by difference), DRY vol. fraction 0.8078 5.3.11 5.3.12 Weight Dry FG At Air Heater INLET 12.9405 lb/lb AF fuel 5.3.13 Molecular Weight Of Dry Flue Gas At Air Heater INLET 30.8291 lb/lb mole

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)
Test Date: January 27, 2004
Test Start Time: 11:30 AM
Test End Time: 3:30 PM Test Duration, hours: 4

Boiler Efficiency: 91.64

		Volume Basis	
5.3.14	Flue Gas Composition, Volume Basis, % Wet Flue Gas	% Wet Flue Gas	
5.3.14.1	Carbon Dioxide, volume percent	14.2664	percent volume
5.3.14.2	Sulfur Dioxide, volume percent	0.01085	percent volume
5.3.14.3	Oxygen from air, volume percent	3.3457	percent volume
5.3.14.4	Nitrogen from air, volume percent	75.1972	percent volume
5.3.14.5	Nitrogen from fuel, volume percent	0.1157	percent volume
5.3.14.6	Moisture from fuel, fuel hydrogen, limestone, and air	7.0641	percent volume
	, ,	100.0000	•
5.3.15	Weight Wet FG At Air Heater INLET	13.5173	lb/lb AF fuel
5.3.16	Molecular Weight Of Wet Flue Gas At Air Heater INLET	29.9210	lb/lb mole
5.3.17	Weight Fraction of DRY Flue Gas Components		
5.3.17.1	Oxygen, fraction weight	0.0374	fraction
5.3.17.2	Nitrogen, fraction weight	0.7379	fraction
5.3.17.3	Carbon Dioxide, fraction weight	0.2191	fraction
5.3.17.4	Carbon Monoxide, fraction weight		fraction
5.3.17.5	Sulfur Dioxide, fraction weight		fraction
0.0.11.0	Canal Dioxido, nacion noigh	0.0000	
5.3.18	Weight Fraction of WET Flue Gas Components		
5.3.18.1	Oxygen, fraction weight	0.0358	fraction
5.3.18.2	Nitrogen, fraction weight	0.7064	fraction
5.3.18.3	Carbon Dioxide, fraction weight	0.2098	fraction
5.3.18.4	Carbon Monoxide, fraction weight	0.0000	fraction
5.3.18.5	Sulfur Dioxide, fraction weight	0.0054	fraction
5.3.18.6	Moisture, fraction weight	0.0425	fraction
5.4 CEM Sa	ampling Location		
5.4.1	ASSUMED EXCESS AIR at CEM SAMPLING LOCATION	23.367	percent
5.4.2	Flue Gas Composition, Weight Basis, lb/lb AF Fuel		
5.4.2.1	Carbon Dioxide, weight fraction	2 8459	lb/lb AF fuel
5.4.2.2	Sulfur Dioxide, weight fraction		lb/lb AF fuel
5.4.2.3	Oxygen from air less oxygen to sulfur capture, weight fraction		lb/lb AF fuel
5.4.2.4	Nitrogen from air, weight fraction		lb/lb AF fuel
5.4.2.5	Nitrogen from fuel, weight fraction	0.0147	
5.4.2.6	Moisture from fuel, weight fraction		lb/lb AF fuel
5.4.2.7	Moisture from hydrogen in fuel, weight fraction	0.0734	
5.4.2.8	Moisture from limestone, weight fraction	0.0019	
5.4.2.9	Moisture from combustion air, weight fraction	0.1102	lb/lb AF fuel
5.4.3	Weight of DRY Products of Combustion - CEM Sampling Location	13.1404	lb/lb AF fuel
5.4.4	Molecular Weight, lb/lb mole DRY FG - CEM Sampling Location	30.7085	lb/lb mole
5.4.5	Weight of WET Products of Combustion - CEM Sampling Location	13.7189	lb/lb AF fuel
5.4.6	Molecular Weight, Ib/Ib mole WET FG - CEM Sampling Location	29.8225	
0.1.0	motodial Motgrit, Israelinio METT O Germ Gamping Escation		15/15 11/0/0
5.4.7	Flue Coe Composition Volume Pools 9/ WET or DDV Flue Co-	Volume Basis	
	Flue Gas Composition, Volume Basis, % WET or DRY Flue Gas	% Wet Flue Gas	
5.4.7.1 a	Carbon Dioxide, volume percent	14.0568	percent volume
5.4.7.2 a	Sulfur Dioxide, volume percent	0.0107	
5.4.7.3 a	Oxygen from air, volume percent	3.6000	
5.4.7.4 a	Nitrogen from air, volume percent	75.2379	
5.4.7.5 a	Nitrogen from fuel, volume percent	0.1140	
5.4.7.6 a	Moisture in flue gas, volume percent	<u>6.9806</u>	
		100.0000	percent volume

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)
Test Date: January 27, 2004
Test Start Time: 11:30 AM
Test End Time: 3:30 PM Test Duration, hours: 4

Boiler Efficiency: 91.64

5.4.7.1 b 5.4.7.2 b 5.4.7.3 b 5.4.7.4 b 5.4.7.6 b 5.4.8 5.4.9 5.4.10 5.4.11 5.5 Determi	Carbon Dioxide, volume percent Sulfur Dioxide, volume percent Oxygen from air, volume percent Nitrogen from air, volume percent Nitrogen from fuel, volume percent Moisture in flue gas, volume percent Oxygen - MEASURED AT CEM SAMPLING LOCATION, % vol - wet Difference Calculated versus Measured Oxygen At CEM Sample Port Sulfur Dioxide - MEASURE AT CEM SAMPLING LOCATION, ppm - o Difference Calculated versus Measure Sulfur Dioxide At CEM ne Loss Due To Dry Gas	80.8841 0.1225 <u>0.0000</u> 100.0000	percent volume percent volume percent volume percent volume percent volume percent volume percent volume percent volume percent percent
554	Fathalas Coefficients For Course Minteres For PTC 4 Cuts Coefficient	10.11	
5.5.1 5.5.2 a 5.5.3 a	Enthalpy Coefficients For Gaseous Mixtures - From PTC 4 Sub-Section 5 C0 C1 C2 C3 C4 C5 Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8	Oxygen -1.1891960E+02 4.2295190E-01 -1.6897910E-04 3.7071740E-07 -2.7439490E-10 7.384742E-14 5.070631E+01 7.095556E+00 Nitrogen -1.3472300E+02 4.6872240E-01	
5.5.2 b 5.5.3 b	C2 C3 C4 C5 Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8 C0 C1 C2 C3	-8.8993190E-05 1.1982390E-07 -3.7714980E-11 -3.5026400E-16 5.6222912E+01 7.9570436E+00 Carbon Dioxide -8.5316190E+01 1.9512780E-01 1.7900110E-07	
5.5.2 c 5.5.3 c	Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8 C0 C1 C2 C3 C4 C5	4.082850E-11 1.0285430E-17 4.9179481E+01 6.5873912E+00 Carbon Monoxide -1.3574040E+02 4.737722E-01 -1.0337790E-04 1.5716920E-07 6.4869650E-11	
5.5.2 d 5.5.3 d	C4 C5 Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8	6.1175980E-15 5.6822088E+01 8.0274306E+00	

Jacksonville Electric A		-			1
Unit Tested: Test Date:	Northside Unit 2 - Test #2 (50/50 Blend) January 27, 2004	<u>L</u>	Boiler Efficiency:	91.64	
Test Start Time: Test End Time:	11:30 AM 3:30 PM				
Test Duration, hours:	4				
		C0	Sulfur Dioxide -6.7416550E+01		
		C1 C2	1.8238440E-01 1.4862490E-04		
		C3 C4	1.2737190E-08 -7.3715210E-11		
550-	Flux Cox Coxellinat Fall-lan AttO45	C5	2.8576470E-14		
5.5.2 e 5.5.3 e	Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8		3.5811376E+01 4.8434473E+00		
	General equation for constituent enthalpy: $h = C0 + C1 * T + C2 * T^2 + C3 * T^3 + C4 * T * T^3 + C5 * T^2 * T^3$ $T = degrees Kelvin = (°F + 459.7)/1.8$				
5.5.4 5.5.5	Flue Gas Enthalpy At Measured AH Outlet Temp - tG15		54.49	Ptu/lb	hFGtG15 = O2wt * hO2 + N2wt * hN2 + CO2wt * hCO2 + COwt *
5.5.6	At Measured AH Air Inlet Temp - tA8			Btu/lb	hFGtA8 = 02wt * h02 + N2wt * hN2 + CO2wt * hCO2 + COwt * h
5.5.7	Dry Flue Gas Loss, as tested		635.78	Btu/lb AF fuel	
5.6 HHV Per	cent Loss, as tested		4.73	percent	
6. HEAT LOSS DUE	TO MOISTURE CONTENT IN FUEL				
6.1 6.2	Water Vapor Enthalpy at tG15 & 1 psia Saturated Water Enthalpy at tA8		1197.78 77.29		hwvtG15 = 0.4329 * tG15 + 3.958E-05 * (tG15) ² + 1062.2 - PTC
6.3	Fuel Moisture Heat Loss, as tested		82.20	Btu/lb AF fuel	
6.4 HHV Per	cent Loss, as tested		0.61	percent	
7. HEAT LOSS DUE	TO H2O FROM COMBUSTION OF H2 IN FUEL				
7.1	H2O From H2 Heat Loss, as tested		440.48	Btu/lb AF fuel	
7.2 HHV Per	cent Loss, as tested		3.28	percent	
8. HEAT LOSS DUE	TO COMBUSTIBLES (UNBURNED CARBON) IN ASH				
8.1	Unburned Carbon In Ash Heat Loss		41.96	Btu/lb AF fuel	
8.2 HHV Per	cent Loss, as tested		0.31	percent	
9. HEAT LOSS DUE	TO SENSIBLE HEAT IN TOTAL DRY REFUSE				
9.1 Determin	e Dry Refuse Heat Loss Per Pound Of AF Fuel				
9.1.1 9.1.2	Bottom Ash Heat Loss, as tested Fly Ash Heat Loss, as tested			Btu/lb AF fuel Btu/lb AF fuel	
9.2 Total Dry	y Refuse Heat Loss, as tested		0.16	Btu/lb AF fuel	
9.3 HHV Per	cent Loss, as tested		0.00	percent	

Jacksonville Electric Authority

Test Duration, hours: 4

Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)

Test Date: January 27, 2004
Test Start Time: 11:30 AM
Test End Time: 3:30 PM

Boiler Efficiency: 91.64

10. HEAT LOSS DUE TO MOISTURE IN ENTERING AIR

10.1 Determine Air Flow

10.1.1 Dry Air Per Pound Of AF Fuel 13.48 lb/lb AF fuel

10.2 Heat Loss Due To Moisture In Entering Air

10.2.1	Enthalpy Of Leaving Water Vapor		Btu/lb AF fuel
10.2.2	Enthalpy Of Entering Water Vapor		Btu/lb AF fuel
10.2.3	Air Moisture Heat Loss, as tested	11.41	Btu/lb

10.3 HHV Percent Loss, as tested 0.08 percent

11. HEAT LOSS DUE TO LIMESTONE CALCINATION/SULFATION REACTIONS

11.1 Loss To Calcination

11.1.1 Limestone Calcination Heat Loss 221.58 Btu/lb AF Fuel

11.2 Loss To Moisture In Limestone

11.2.1 Limestone Moisture Heat Loss 2.08 Btu/lb AF Fuel

11.3 Loss From Sulfation

11.3.1 Sulfation Heat Loss -349.25 Btu/lb AF Fuel

11.4 Net Loss To Calcination/Sulfation

11.4.1 Net Limestone Reaction Heat Loss -125.59 Btu/lb AF Fuel

11.5 HHV Percent Loss -0.94 percent

12. HEAT LOSS DUE TO SURFACE RADIATION & CONVECTION

12.1 HHV Percent Loss 0.27 percent

12.1.1 Radiation & Convection Heat Loss 36.78 Btu/lb AF fuel

13. SUMMARY OF LOSSES - AS TESTED/GUARANTEE BASIS

As Tested Btu/lb AF Fuel 13.1.1 635.78 13.1.2 82.20 13.1.3 440.48 13.1.4 41.96 13.1.5 0.16 13.1.6 11.41 13.1.7 -125.59 13.1.8 36.78 1,123.18

Jacksonville Electric Authority
Unit Tested: Norths

Boiler Efficiency:

91.64

91.64

Northside Unit 2 - Test #2 (50/50 Blend) January 27, 2004 11:30 AM 3:30 PM Test Date: Test Start Time: Test End Time: Test Duration, hours: 4

		As Tested Percent Loss
13.1.9	Dry Flue Gas	4.73
13.1.10	Moisture In Fuel	0.61
13.1.11	H2O From H2 In Fuel	3.28
13.1.12	Unburned Combustibles In Refuse	0.31
13.1.13	Dry Refuse	0.00
13.1.14	Moisture In Combustion Air	0.08
13.1.15	Calcination/Sulfation	-0.94
13.1.16	Radiation & Convection	0.27
		8.36

Boiler Efficiency (100 - Total Losses), percent

14. HEAT INPUT TO WATER & STEAM

14.1 Enthalpies

13.2

14.1.1	Feedwater, Btu/lb	469.42	Btu/lb
14.1.2	Blow Down, Btu/lb	738.40	Btu/lb
14.1.3	Sootblowing, Btu/lb	0.00	Btu/lb
14.1.4	Desuperheating Spray Water - Main Steam, Btu/lb	277.56	Btu/lb
14.1.5	Main Steam, Btu/lb	1463.44	Btu/lb
14.1.6	Desuperheating Spray Water - Reheat Steam, Btu/lb	271.71	Btu/lb
14.1.7	Reheat Steam - Reheater Inlet, Btu/lb	1293.94	Btu/lb
14.1.8	Reheat Steam - Reheater Outlet, Btu/lb	1521.20	Btu/lb
14.2 Heat Output		2,245,760,604 2,247,546,274	Btu/h

15. HIGHER HEATING VALUE FUEL HEAT INPUT

15.1 Determine Fuel Heat Input Based on Calculated Efficiency

15.1.1	Fuel Heat Input	2,450,735,926	Btu/h
15.1.2	Fuel Burned - CALCULATED	182,496	lb/h
15.1.3	Difference Assumed versus Calculated Fuel Burned	-0.000699774	percent

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend) Boiler Efficiency: 91.74

Test Date: January 28, 2004
Test Start Time: 10:00 AM
Test End Time: 4:00 PM
Test Duration, hours: 4

DATA INPUT SECTION - INPUT ALL DATA REQUESTED IN SECTION 1 EXCEPT AS NOTED

1. DATA REQUIRED FOR BOILER EFFICIENCY DETERMINATION

AS - TESTED

	<u> </u>	Average Value	<u>Units</u>	Symbol
1.1 Fuel				
1.1.1	Feed Rate, lb/h	195,177	lb/h	Wfe - Summation feeder feed rates - FN-34-FT-508, 528, 548, 568, 588, 608, 628, 668
440	Composition ("as fired")	0.7000	lb/lb AF fuel	Of the sector control of and appeals abtained by such according
1.1.2 1.1.3	Carbon, fraction Hydrogen, fraction		lb/lb AF fuel	Cf - Laboratory analysis of coal samples obtained by grab sampling. Hf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.3	Oxygen, fraction		lb/lb AF fuel	Of - Laboratory analysis of coal samples obtained by grab sampling.
1.1.5	Nitrogen, fraction		lb/lb AF fuel	Nf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.6	Sulfur, fraction		lb/lb AF fuel	Sf - Laboratory analysis of coal samples obtained by grab sampling.
1.1.7	Ash, fraction		lb/lb AF fuel	Af - Laboratory analysis of coal samples obtained by grab sampling.
1.1.8	Moisture, fraction		lb/lb AF fuel	H2Of - Laboratory analysis of coal samples obtained by grab sampling.
1.1.9	Calcium, fraction		lb/lb AF fuel	Caf - Laboratory analysis of coal samples obtained by grab sampling - assume a value of zero if not reported.
1.1.10	HHV	13,251		HHV - Laboratory analysis of coal samples obtained by grab sampling.
				,,,,,,,,,
1.2 Limestone				
1.2.1	Feed Rate, lb/h	73,001	lb/h	Wle - Summation feeder feed rates - 2RN-53-010-Rate, 011, 012
	Composition ("as fired")			
1.2.2	CaCO3, fraction		lb/lb limestone	CaCO3I - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.3	MgCO3, fraction		lb/lb limestone	MgCO3I - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.4	Inerts, fraction		lb/lb limestone	II - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.5	Moisture, fraction		lb/lb limestone	H2OI - Laboratory analysis of limestone samples obtained by grab sampling.
1.2.6	Carbonate Conversion, fraction	0.7909		XCO2 - Laboratory analysis of limestone samples obtained by grab sampling - assume value of 1 if not reported
1.3 Bottom Ash				
1.3.1	Temperature, °F at envelope boundary	0	°F	tba - Plant instrument.
	Composition			
1.3.2	Organic Carbon, wt fraction	0.0001	lb/lb BA	Cbao - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.3	Inorganic Carbon, wt fraction	0.0000	lb/lb BA	Cbaio - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.4	Total Carbon, wt fraction - CALCULATED VALUE DO NOT ENTER	0.0001	lb/lb BA	Cba = Cbao + Cbaio
1.3.5	Calcium, wt fraction		lb/lb BA	Caba - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.6	Carbonate as CO2, wt fraction	0.0000	lb/lb BA	CO2ba - Laboratory analysis of bottom ash samples obtained by grab sampling.
1.3.7	Bottom Ash Flow By Iterative Calculation - ENTER ASSUMED VALUE TO BEGIN CALCULATIO	54,570 ON	lb/h	Wbae
1.4 Fly Ash				
1.4 Fly ASII	Composition			
1.4.1	Organic Carbon, wt fraction	0.0167	lb/lb FA	Cfao - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.2	Inorganic Carbon, wt fraction		lb/lb FA	Cfaio - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.3	Carbon, wt fraction - CALCULATED VALUE DO NOT ENTER		lb/lb FA	Cfa = Cfao + Cfaio
1.4.4	Calcium, wt fraction		lb/lb FA	Cafa - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.5	Carbonate as CO2, wt fraction		lb/lb FA	CO2fa - Laboratory analysis of fly ash samples obtained by grab sampling.
1.4.6	Fly Ash Flow	27,159		Wfam - Weight of fly ash from isokenetic sample collection.
1.5 Combustion				
	Primary Air			
454	Hot	4 704 004	IL /L	Wass Plant industrial
1.5.1	Flow Rate, lb/h	1,761,691 96		Wpae - Plant instrument.
1.5.2	Air Heater Inlet Temperature, °F	96	TF	tpa
4.5.0	Cold		LD/UD	
1.5.3	Flow Rate, lb/h		LB/HR	
1.5.4	Fan Outlet Temperature, °F	96	-F	
	Secondary Air			
1.5.5	Flow Rate, lb/h	755,011	lb/h	Wsae - Plant instrument.
1.5.6	Air Heater Inlet Temperature, °F	95	°F	tsa
	Intrex Blower			
1.5.7	Flow Rate, lb/h	35,984	lh/h	Wib - Plant instrument
1.5.8	Blower Outlet Temperature, oF	150	·F	tib
	Seal Pot Blowers			
1.5.9	Flow Rate, lb/h	45158	lb/h	Wspb - Plant instrument
1.5.10	Blower Outlet Temperature, oF	162	°F	tspb
		.52		The Control of the Co

Boiler Efficiency: 91.74

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)
Test Date: January 28, 2004
Test Start Time: 10:00 AM
Test End Time: 4:00 PM

Test End Time:	4
Test Duration hours:	4

1.6 Ambier	at Conditions			
1.6.1	Ambient dry bulb temperature, °F	39.96	°F	ta
1.6.2	Ambient wet bulb temperature, °F	43.19	°F	tawb
1.6.3	Barometric pressure, inches Hg		inches Hg	Patm
1.6.4	Moisture in air, lbH2O/lb dry air		lbH2O/lb dry air	Calculated: H2OA - From psychometric chart at temperatures ta and tawb adjusted to test Patm.
1.0.4	Worsture III all, IDI 120/ID dry all	0.0003	ibi izo/ib diy ali	Calculated. 1120A - From psycholitetric chart at temperatures ta and tawb adjusted to test Fatin.
1.7 Flue Ga	IS .			
	At Air Heater Outlet			
1.7.1	Temperature (measured), °F	293.84	°F	Tg15 - Weighted average from AH outlet plant instruments (based on PA and SA flow rates)
1.7.2	Temperature (unmeasured), °F			Calculated
	Composition (wet)			
1.7.3	O2	0.0450	percent volume	O2 - Weighted average from test instrument
1.7.4	CO2		percent volume	CO2
1.7.5	CO		percent volume	CO
1.7.6	SO2	Not Measured	percent volume	SO2
	At Air Heater Inlet			
1.7.7	Temperature, °F	570.21	°F	tG14 - Plant Instrument
	Composition (wet)			
1.7.8	02	0.0360	percent volume	
1.7.9	CO2	Not Measured		
1.7.10	CO	Not Measured		
1.7.11	SO2		percent volume	measurement is in ppm
1.7.11	302	0.0032	percent volume	measurement is in ppin
	CEM Sample Extraction At Outlet Of Economizer Composition			
1.7.12	O2, percent - WET basis	3.600	percent volume	O2stk
1.7.13	SO2, ppm - dry basis		ppm	SO2stk
1.7.14	NOx, ppm - dry basis		ppm	Noxstk
1.7.15	CO, ppm - dry basis	Not Measured		Costk
1.7.16	Particulate, mg/Nm³			PARTstk
1.7.10	Particulate, mg/Nm	Not Measured	mg/mm - 25 C	PARISIK
1.8 Feedwa	iter			
1.8.1	Pressure, PSIG	1501.9	PSIG	pfw - Plant instrument.
1.8.2	Temperature, °F	483.5		tfw - Plant instrument.
1.8.3	Flow Rate, lb/h	1,823,519		FW - Plant instrument.
	uous Blow Down			
1.9.1	Pressure, PSIG (drum pressure)	2,562.0		pbd - Plant instrument
1.9.2	Temperature, °F (sat. temp. @ drum pressure)	673.7		tba - Saturated water temperature from steam table at drum pressure.
1.9.3	Flow Rate, lb/h	0.00	lb/h	BD - Estimated using flow characteristic of valve and number of turns open.
1.10 Sootb	lowing			
	Flow Rate, LB/HR	0.00	I D/LID	SB - Plant instrument
1.10.1				
1.10.2	Pressure, PSIG	0.00		psb - Plant instrument
1.10.3	Temperature, F	0.00	F	tsb - plant instrument
1.11 Main 9	Steam Desuperheating Water			
1.11.1	Pressure, PSIG	2,699.7	PSIG	pdsw - Plant instrument.
1.11.2	Temperature, °F		°F	tdsw - Plant instrument.
1.11.3	Flow Rate, lb/h	22,822	ID/N	DSW - Plant instrument.
1.12 Main 9	Steam			
1.12.1	Pressure, PSIG (superheater outlet)	2,400.9	PSIG	pms - Plant instrument.
1.12.2	Temperature, °F	1,002.7		tms - Plant instrument.
1.12.3	Flow Rate, lb/h	1,846,341		MS - Plant instrument - Not required to determine boiler efficiency - For information only.
				· · · · · · · · · · · · · · · · · · ·
	t Steam Desuperheating Water		POLO	
1.13.1	Pressure, PSIG	708.45		pdswrh - Plant instrument.
1.13.2	Temperature, °F		°F	tdswrh - Plant instrument.
	Flow Rate, lb/h	2,164	lb/h	DSWrh - Plant instrument.
1.13.3				
	t Steam			
1.14 Rehea		F04.04	DCIC	arbin Plant instrument
1.14 Rehea 1.14.1	Inlet Pressure, PSIG	564.91		prhin - Plant instrument.
1.14 Rehea 1.14.1 1.14.2	Inlet Pressure, PSIG Inlet Temperature, °F	599.83	°F	trhin - Plant instrument.
1.14 Rehea 1.14.1 1.14.2 1.14.3	Inlet Pressure, PSIG Inlet Temperature, °F Outlet Pressure, PSIG	599.83 565.43	°F PSIG	trhin - Plant instrument. prhout - Plant instrument.
1.14 Rehea 1.14.1 1.14.2	Inlet Pressure, PSIG Inlet Temperature, °F	599.83	°F PSIG °F	trhin - Plant instrument.

Jacksonville Electric Authority

Northside Unit 2 - Test #2 (50/50 Blend) Unit Tested:

Test Date: January 28, 2004 Test Start Time: 10:00 AM Test End Time: 4:00 PM Test Duration, hours: 4

Boiler Efficiency: 91.74

CALCULATION SECTION - ALL VALUES BELOW CALCULATED BY EMBEDDED FORMULAS - DO NOT ENTER DATA BELOW THIS LINE -**EXCEPT ASSUMED VALUES FOR ITERATIVE CALCULATIONS**

2. REFERENCE TEMPERATURES

2.1 Average Air Heater Inlet Temperature

96.32

3. SULFUR CAPTURE

The calculation of efficiency for a circulating fluid bed steam generator that includes injection of a reactive sorbent material, such as limestone, to reduce sulfur dioxide emissions is an iterative calculation to minimize the number of parameters that have to be measured and the number of laboratory material analyses that must be performed. This both reduces the cost of the test and increases the accuracy by minimizing the impact of field and laboratory instrument inaccuracies.

To begin the process, assume a fuel flow rate. The fuel flow rate is required to complete the material balances necessary to determine the amount of limestone used and the effect of the limestone reaction on the boiler efficiency. The resulting boiler efficiency is used to calculate a value for the fuel flow rate. If the calculated flow rate is more than 1 percent different than the assumed flow rate, a new value for fuel flow rate is selected and the efficiency calculation is repeated. This process is repeated until the assumed value for fuel flow and the calculated value for fuel flow differ by less than 1 percent of of the value of the calculated fuel flow rate.

1 ASSI	IMED	FHF	FI OW RA	ATE lh/h

185.198 lb/h

3.2 ASSUMED SULFUR EMISSIONS, fraction

0.0269 fraction 0.9731

Can get reading from CEMS system

al = (CaCO3I * (56.0794/100.08935)) + ((CaCO3I/CaS) * (80.0622/100.08935) * XSO2) +

WIe = ((Wfea * af * ((Caf - (Cafa/(1 - Cfai)))) + Wbae' * (1 - Cba') * ((Cafa/(1 - Cfa)) - Caba))/((Cafa/(1 - Cfai)))

3.3 Sulfur Capture, fraction

4. ASH PRODUCTION AND LIMESTONE CONSUMPTION

4.1 Accumulation of Bed Inventory

0 lb/h

4.2 Corrected Ash Carbon Content

0.0001 lb/lb BA

422 Fly Ash, fraction 0.0167 lb/lb FA

4.3 Bottom Ash Flow Rate

421

Total bottom ash including bed change 431

Bottom Ash fraction

54,570.4521370 lb/h

4.4 Limestone Flow Rate

Iterate to determine calcium to sulfur ratio and limestone flow rate. Enter an assumed value for the calcium to sulfur ratio. Compare resulting calculated calcium to sulfur ratio to assumed value. Change assumed value until the difference between the assumed value and the calculated value is less than 1 percent of the assumed value.

441	ASSUMED CALCIUM to SULFUR RATIO

1.8606 mole Ca/mole S

4.4.2 Solids From Limestone - estimated 0.96324464 lb/lb limestone

4.4.3 Limestone Flow Rate - estimated 73001 lb/h

4.4.4 Calculated Calcium to Sulfur Ratio I Imestone Flow Rate from PI Data, Ib/h 1.860570872 mole Ca/mole S

4.4.5 Difference Estimated vs Assumed - Ca:S

73.001 9.12915E-06 percent

4.4.6 Calculated Fly Ash Flow Rate 27.159 lb/h

4.4.7 Difference Calculated vs Measured

0.0000000026 percent

4.5 Total Dry Refuse 4.5.1 Total Dry Refuse Hourly Flow Rate

81,729 lb/h

Total Dry Refuse Per Pound Fuel 4.5.2

0.4413 lb/lb AF fuel

4.6 Heating Value Of Total Dry Refuse

4.6.1 Average Carbon Content Of Ash Heating Value Of Dry Refuse 4.6.2

0.0056 fraction 81.44 Btu/lb

5. HEAT LOSS DUE TO DRY GAS

5.1 Carbon Burned Adjusted For Limestone

5.1.1 Carbon Burned 0.7343 lb/lb AF fuel 5.1.2 Carbon Adjusted For Limestone 0.7679 lb/lb AF fuel Jacksonville Electric Authority

Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)

January 28, 2004 10:00 AM Test Date: Test Start Time: Test End Time: 4:00 PM Test Duration, hours: 4

Boiler Efficiency: 91.74

Determine Amount Of Flue Gas

Iterate to determine carbon dioxide volumetric content of dry flue gas. Enter an assumed value for excess air.

Compare resulting calculated oxygen content to the measure oxygen content. Change assumed value of excess air until the difference between the calculated oxygen content value and the measured value oxygen content value is less than 1 percent of the assumed value.

Use the calculated carbon dioxide value in subsequent calculations.

5.2 Air Heater Outlet

5.2.1	ASSUMED EXCESS AIR at AIR HEATER OUTLET	28.056	percent	O2stoich = (31.9988/12.01115) * Cb + (15.9994/2.01594) * Hf + (31.9998/32.064) * Sf - Of + (((Sf *
5.2.2 5.2.3	Corrected Stoichiometric O2, lb/lb fuel Corrected Stoichiometric N2, lb/lb fuel		lb/lb AF fuel lb/lb AF fuel	31.9988/32.064) * (XSO2) * 31.9988 * 0.5/64.0128)
5.2.3 5.2.4 5.2.4.1 5.2.4.3 5.2.4.4 5.2.4.5 5.2.4.6 5.2.4.7 5.2.4.8 5.2.4.9 5.2.5 5.2.6	Corrected Stoichiometric N2, Ib/Ib fuel Flue Gas Composition, Weight Basis, Ib/Ib AF Fuel Carbon Dioxide, weight fraction Sulfur Dioxide, weight fraction Oxygen from air less oxygen to sulfur capture, weight fraction Nitrogen from air, weight fraction Nitrogen from air, weight fraction Missture from fuel, weight fraction Moisture from hydrogen in fuel, weight fraction Moisture from limestone, weight fraction Moisture from combustion air, weight fraction Weight of DRY Products of Combustion - Air Heater OUTLET Molecular Weight, Ib/Ib mole DRY FG - Air Heater OUTLET	2.8135 0.0031 0.6397 10.1305 0.0163 0.0705 0.4114 0.0014 0.0851	Ib/Ib AF fuel	MWahoutdry = Wgcalc/((CO2calc/44.0095) + (SO2calc/64.0629) + (O2calc/31.9988) + (N2acalc/28.161) + (Nf/28.0134))
5.2.7 5.2.8	Weight of WET Products of Combustion - Air Heater OUTLET Molecular Weight, Ib/Ib mole WET FG - Air Heater OUTLET		lb/lb AF fuel	MWahoutwet = Wgcalc/((CO2calc/44.0095) + (SO2calc/64.0629) + (O2calc/31.9988) + (N2acalc/28.161) + (Nf/28.0134) + ((H2Of + H2Oh2 + H2Ohf + H2Oair)/18.01534))
5.2.9	Dry Flue Gas Composition, Volume Basis, % Dry Flue Gas			Note: Molecular weight of nitrogen in air (N2a) is 28.161 lb/lb mole per PTC 4 Sub-Section 5.11.1 to account for trace gases in air.
5.2.9.1 5.2.9.2	Carbon Dioxide, volume percent		percent volume	
5.2.9.2 5.2.9.3	Sulfur Dioxide, volume percent Oxygen from air, volume percent	0.0111	percent volume percent volume	
5.2.9.4	Nitrogen from air, volume percent	80.9689		
5.2.9.5	Nitrogen from fuel, volume percent	0.1311	percent volume	
5.2.10	Oxygen - MEASURED AT AIR HEATER OUTLET, % vol - dry FG	4.5	percent	
5.2.11	Difference Calculated versus Measured Oxygen At Air Heater Outlet	0.000647346	percent	
5.2.12	Carbon Dioxide, DRY vol. fraction	0.1439		
5.2.13	Nitrogen (by difference), DRY vol. fraction	0.8111		
5.2.14	Weight Dry FG At Air Heater OUTLET	13.5512	lb/lb AF fuel	
5.2.15	Molecular Weight Of Dry Flue Gas At Air Heater OUTLET	30.6147	lb/lb mole	
5.2.16 5.2.16.1 5.2.16.2 5.2.16.3 5.2.16.4 5.2.16.5 5.2.16.6	Wet Flue Gas Composition, Volume Basis, % Wet Flue Gas Carbon Dioxide, volume percent Sulfur Dioxide, volume percent Oxygen from air, volume percent Nitrogen from air, volume percent Nitrogen from fuel, volume percent Moisture from fuel, fuel hydrogen, limestone, and air	0.01033 4.2015 75.5993 0.1224		H2O%out = (((H2Of + H2Oh2 + H2Ol/f + H2Oair)/18.01534) * (100)/(Wgcalcahoutwet/MWahoutwet)
5.2.17	Weight Wet FG At Air Heater OUTLET	14.1197	lb/lb AF fuel	
5.2.18	Molecular Weight Of Wet Flue Gas At Air Heater OUTLET	29.7763	lb/lb mole	

Jacksonville Electric Authority Northside Unit 2 - Test #2 (50/50 Blend) Boiler Efficiency: 91.74 Unit Tested: Test Date: January 28, 2004 Test Start Time: 10:00 AM Test End Time: 4:00 PM Test Duration, hours: 4 5.2.19 Weight Fraction of DRY Flue Gas Components 5.2.19.1 0.0470 fraction Oxygen, fraction weight 5.2.19.2 Nitrogen, fraction weight 0.7461 fraction 5.2.19.3 Carbon Dioxide, fraction weight 0.2069 fraction 5.2.19.4 Carbon Monoxide, fraction weight 0.0000 fraction 5.2.19.5 Sulfur Dioxide, fraction weight 0.0000 fraction Weight Fraction of WET Flue Gas Components -NOT USED IN CALCULATION 5.2.20 Oxygen, fraction weight fraction 5.2.20.1 5.2.20.2 Nitrogen, fraction weight fraction 5.2.20.3 Carbon Dioxide, fraction weight fraction Carbon Monoxide, fraction weight fraction 5 2 20 4 5.2.20.5 Sulfur Dioxide, fraction weight fraction 5.2.20.6 Moisture, fraction weight fraction 5.3 Air Heater Inlet ASSUMED EXCESS AIR at AIR HEATER INLET 5.3.1 21.569 percent 5.3.2 Flue Gas Composition, Weight Basis, lb/lb AF Fuel 5.3.2.1 Carbon Dioxide, weight fraction 2.8135 lb/lb AF fuel 0.0031 lb/lb AF fuel 5.3.2.2 Sulfur Dioxide, weight fraction 5.3.2.3 Oxygen from air less oxygen to sulfur capture, weight fraction 0.4852 lb/lb AF fuel 9.6173 lb/lb AF fuel 5.3.2.4 Nitrogen from air, weight fraction Nitrogen from fuel, weight fraction 0.0163 lb/lb AF fuel 5.3.2.5 5.3.2.6 Moisture from fuel, weight fraction 0.0705 lb/lb AF fuel 5.3.2.7 Moisture from hydrogen in fuel, weight fraction 0.4114 lb/lb AF fuel 0.0014 lb/lb AF fuel 5.3.2.8 Moisture from limestone, weight fraction 5329 Moisture from combustion air, weight fraction 0.0808 lb/lb AF fuel 5.3.3 Weight of DRY Products of Combustion - Air Heater INLET 12.9355 lb/lb AF fuel Molecular Weight, Ib/lb mole DRY FG - Air Heater INLET 30.7084 lb/lb mole 534 Weight of WET Products of Combustion - Air Heater INLET 13.4997 lb/lb AF fuel 5.3.5 29.8301 lb/lb AF fuel 536 Molecular Weight, lb/lb mole WET FG - Air Heater INLET Volume Basis 5.3.7 Flue Gas Composition, Volume Basis, % DRY Flue Gas % Dry Flue Gas 15.1763 percent volume 5.3.7.1 Carbon Dioxide, volume percent 5.3.7.2 Sulfur Dioxide, volume percent 0.0117 percent volume 3.6000 percent volume 5.3.7.3 Oxygen from air, volume percent Nitrogen from air, volume percent 81.0737 percent volume 5.3.7.4 5.3.7.5 Nitrogen from fuel, volume percent 0.1383 percent volume 100.0000 percent volume 5.3.8 Oxygen - MEASURED AT AIR HEATER INLET, % vol - dry FG 3.6 percent 0.000655001 percent 5.3.9 Difference Calculated versus Measured Oxygen At Air Heater Inlet 5.3.10 Carbon Dioxide, DRY vol. fraction 0.1518 Nitrogen (by difference), DRY vol. fraction 0.8071 5.3.11 5.3.12 Weight Dry FG At Air Heater INLET 12.9631 lb/lb AF fuel 5.3.13 Molecular Weight Of Dry Flue Gas At Air Heater INLET 30.8923 lb/lb mole

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)
Test Date: January 28, 2004
Test Start Time: 10:00 AM
Test End Time: 4:00 PM Test Duration, hours: 4

Boiler Efficiency: 91.74

		Volume Basis	
5.3.14	Flue Gas Composition, Volume Basis, % Wet Flue Gas	% Wet Flue Gas	
5.3.14.1	Carbon Dioxide, volume percent	14.1261	percent volume
5.3.14.2	Sulfur Dioxide, volume percent	0.01086	
5.3.14.3	Oxygen from air, volume percent	3.3509	
5.3.14.4	Nitrogen from air, volume percent	75.4633	
5.3.14.5	Nitrogen from fuel, volume percent	0.1287	
5.3.14.6	Moisture from fuel, fuel hydrogen, limestone, and air	6.9201	percent volume
		100.0000	
5.3.15	Weight Wet FG At Air Heater INLET	13.5273	lb/lb AF fuel
5.3.16	Molecular Weight Of Wet Flue Gas At Air Heater INLET	29.9981	lb/lb mole
5.3.17	Weight Fraction of DRY Flue Gas Components		
5.3.17.1	Oxygen, fraction weight	0.0373	fraction
5.3.17.2	Nitrogen, fraction weight	0.7357	fraction
5.3.17.3	Carbon Dioxide, fraction weight	0.2163	fraction
5.3.17.4	Carbon Monoxide, fraction weight	0.0000	fraction
5.3.17.5	Sulfur Dioxide, fraction weight		fraction
5.3.18	Weight Fraction of WET Flue Gas Components		
5.3.18.1	Oxygen, fraction weight	0.0357	fraction
5.3.18.2	Nitrogen, fraction weight		fraction
5.3.18.3	Carbon Dioxide, fraction weight		fraction
5.3.18.4	Carbon Monoxide, fraction weight		fraction
5.3.18.5	Sulfur Dioxide, fraction weight		fraction
5.3.18.6	Moisture, fraction weight	0.0416	fraction
5.4 CEM Sa	ampling Location		
5.4.1	ASSUMED EXCESS AIR at CEM SAMPLING LOCATION	23.402	percent
5.4.2	Flue Gas Composition, Weight Basis, lb/lb AF Fuel		
5.4.2.1	Carbon Dioxide, weight fraction	2.8135	lb/lb AF fuel
5.4.2.2	Sulfur Dioxide, weight fraction	0.0031	lb/lb AF fuel
5.4.2.3	Oxygen from air less oxygen to sulfur capture, weight fraction	0.5289	lb/lb AF fuel
5.4.2.4	Nitrogen from air, weight fraction	9.7623	lb/lb AF fuel
5.4.2.5	Nitrogen from fuel, weight fraction	0.0163	lb/lb AF fuel
5.4.2.6	Moisture from fuel, weight fraction	0.0705	lb/lb AF fuel
5.4.2.7	Moisture from hydrogen in fuel, weight fraction	0.4114	lb/lb AF fuel
5.4.2.8	Moisture from limestone, weight fraction		lb/lb AF fuel
5.4.2.9	Moisture from combustion air, weight fraction		lb/lb AF fuel
5.4.3	Weight of DRY Products of Combustion - CEM Sampling Location	13 12/12	lb/lb AF fuel
5.4.4	Molecular Weight, lb/lb mole DRY FG - CEM Sampling Location		lb/lb mole
5.4.5	WILL OWET DOLL OF A COUNTY OF	40,0000	
5.4.5	Weight of WET Products of Combustion - CEM Sampling Location		lb/lb AF fuel
5.4.6	Molecular Weight, lb/lb mole WET FG - CEM Sampling Location	29.8160	lb/lb mole
		Volume Basis	
5.4.7	Flue Gas Composition, Volume Basis, % WET or DRY Flue Gas	% Wet Flue Gas	
5.4.7.1 a	Carbon Dioxide, volume percent	13.9236	
5.4.7.2 a	Sulfur Dioxide, volume percent	0.0107	
5.4.7.3 a	Oxygen from air, volume percent	3.6000	percent volume
5.4.7.4 a	Nitrogen from air, volume percent	75.5031	percent volume
5.4.7.5 a	Nitrogen from fuel, volume percent	0.1269	percent volume
5.4.7.6 a	Moisture in flue gas, volume percent	6.8357	percent volume
	· ·	100.0000	percent volume

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend)
Test Date: January 28, 2004
Test Start Time: 10:00 AM
Test End Time: 4:00 PM Test Duration, hours: 4

Boiler Efficiency: 91.74

5.4.7.1 b 5.4.7.2 b 5.4.7.3 b 5.4.7.4 b 5.4.7.5 b 5.4.7.6 b 5.4.8 5.4.9 5.4.10 5.4.11	Carbon Dioxide, volume percent Sulfur Dioxide, volume percent Oxygen from air, volume percent Nitrogen from air, volume percent Nitrogen from fuel, volume percent Moisture in flue gas, volume percent Oxygen - MEASURED AT CEM SAMPLING LOCATION, % vol - wet i Difference Calculated versus Measured Oxygen At CEM Sample Port Sulfur Dioxide - MEASURE AT CEM SAMPLING LOCATION, ppm - c Difference Calculated versus Measure Sulfur Dioxide At CEM	3.8641 81.0430 0.1362 0.0000 100.0000	percent volume percent volume percent volume percent volume percent volume percent volume percent volume percent volume percent percent
5.5 Determi	ne Loss Due To Dry Gas		
5.5.1 5.5.2 a	Enthalpy Coefficients For Gaseous Mixtures - From PTC 4 Sub-Section 5 C0 C1 C2 C3 C4 C5 Flue Gas Constituent Enthalpy At tG15	.19.11 Oxygen -1.1891960E+02 4.2295190E-01 -1.6897910E-04 3.7071740E-07 -2.7439490E-10 7.384742E-14 4.824907E+01	
5.5.3 a	Flue Gas Constituent Enthalpy At tA8 C0 C1 C2 C3 C4 C5	Nitrogen -1.3472300E+02 4.6872240E-01 1.9823300E-07 -3.7714980E-11 -3.5026400E-16	
5.5.2 b 5.5.3 b	Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8 C0 C1 C2 C3 C4 C5	5.3532667E+01 4.7612480E+00 Carbon Dioxide -8.5316190E+01 1.9512780E-01 3.5498060E-04 -1.7900110E-07 4.0682850E-11 1.0285430E-17	
5.5.2 c 5.5.3 c	Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8 C0 C1 C2 C3 C4 C5	4.6700315E+01 3.9252409E+00 Carbon Monoxide -1.3574040E+02 4.7377220E-01 -1.0337790E-04 1.5716920E-07 -6.4869650E-11 6.1175980E-15	
5.5.2 d 5.5.3 d	Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8	5.4097371E+01 4.8028593E+00	

Jacksonville Electric A		-			•
Unit Tested: Test Date: Test Start Time: Test End Time: Test Duration, hours:	Northside Unit 2 - Test #2 (50/50 Blend) January 28, 2004 10:00 AM 4:00 PM	<u>l</u>	Boiler Efficiency:	91.74	
		C0 C1 C2 C3 C4 C5	Sulfur Dioxide -6.7416550E+01 1.8238440E-01 1.4862490E-04 1.2737190E-08 -7.3715210E-11 2.8576470E-14		
5.5.2 e 5.5.3 e	Flue Gas Constituent Enthalpy At tG15 Flue Gas Constituent Enthalpy At tA8		3.4021227E+01 2.8883721E+00		
	General equation for constituent enthalpy: $h = C0 + C1 * T + C2 * T^2 + C3 * T^3 + C4 * T * T^3 + C5 * T^2 * T^3$ $T = \text{degrees Kelvin} = (°F + 459.7)/1.8$				
5.5.4 5.5.5 5.5.6	Flue Gas Enthalpy At Measured AH Outlet Temp - tG15 At Measured AH Air Inlet Temp - tA8		51.87 4.56	Btu/lb Btu/lb	hFGtG15 = O2wt * hO2 + N2wt * hN2 + CO2wt * hCO2 + COwt * hFGtA8 = O2wt * hO2 + N2wt * hN2 + CO2wt * hCO2 + COwt * h
5.5.7	Dry Flue Gas Loss, as tested		641.07	Btu/lb AF fuel	
5.6 HHV Per	cent Loss, as tested		4.84	percent	
6. HEAT LOSS DUE	TO MOISTURE CONTENT IN FUEL				
6.1 6.2	Water Vapor Enthalpy at tG15 & 1 psia Saturated Water Enthalpy at tA8		1192.82 64.32		hwvtG15 = 0.4329 * tG15 + 3.958E-05 * (tG15) ² + 1062.2 - PTC
6.3	Fuel Moisture Heat Loss, as tested		79.59	Btu/lb AF fuel	
6.4 HHV Per	cent Loss, as tested		0.60	percent	
7. HEAT LOSS DUE	TO H2O FROM COMBUSTION OF H2 IN FUEL				
7.1	H2O From H2 Heat Loss, as tested		464.30	Btu/lb AF fuel	
7.2 HHV Per	cent Loss, as tested		3.50	percent	
8. HEAT LOSS DUE	TO COMBUSTIBLES (UNBURNED CARBON) IN ASH				
8.1	Unburned Carbon In Ash Heat Loss		35.94	Btu/lb AF fuel	
8.2 HHV Per	cent Loss, as tested		0.27	percent	
9. HEAT LOSS DUE	TO SENSIBLE HEAT IN TOTAL DRY REFUSE				
9.1 Determin	e Dry Refuse Heat Loss Per Pound Of AF Fuel				
9.1.1 9.1.2	Bottom Ash Heat Loss, as tested Fly Ash Heat Loss, as tested			Btu/lb AF fuel Btu/lb AF fuel	
9.2 Total Dry	y Refuse Heat Loss, as tested		-1.30	Btu/lb AF fuel	
9.3 HHV Per	cent Loss, as tested		-0.01	percent	

Jacksonville Electric Authority

Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend) Boiler Efficiency:

Test Date: January 28, 2004
Test Start Time: 10:00 AM
Test End Time: 4:00 PM
Test Duration, hours: 4

r Efficiency: 91.74

0.06 percent

10. HEAT LOSS DUE TO MOISTURE IN ENTERING AIR

10.1 Determine Air Flow

0.1.1 Dry Air Per Pound Of AF Fuel 13.50 lb/lb AF fuel

10.2 Heat Loss Due To Moisture In Entering Air

10.2.1	Enthalpy Of Leaving Water Vapor		Btu/lb AF fuel
10.2.2	Enthalpy Of Entering Water Vapor		Btu/lb AF fuel
10.2.3	Air Moisture Heat Loss, as tested	8.58	Btu/lb

11. HEAT LOSS DUE TO LIMESTONE CALCINATION/SULFATION REACTIONS

11.1 Loss To Calcination

11.1.1 Limestone Calcination Heat Loss 212.04 Btu/lb AF Fuel

11.2 Loss To Moisture In Limestone

10.3 HHV Percent Loss, as tested

11.2.1 Limestone Moisture Heat Loss 1.60 Btu/lb AF Fuel

11.3 Loss From Sulfation

11.3.1 Sulfation Heat Loss -384.13 Btu/lb AF Fuel

11.4 Net Loss To Calcination/Sulfation

11.4.1 Net Limestone Reaction Heat Loss -170.49 Btu/lb AF Fuel

11.5 HHV Percent Loss -1.29 percent

12. HEAT LOSS DUE TO SURFACE RADIATION & CONVECTION

12.1 HHV Percent Loss 0.27 percent

12.1.1 Radiation & Convection Heat Loss 36.22 Btu/lb AF fuel

13. SUMMARY OF LOSSES - AS TESTED/GUARANTEE BASIS

	As Tested
	Btu/lb AF Fuel
13.1.1	641.07
13.1.2	79.59
13.1.3	464.30
13.1.4	35.94
13.1.5	-1.30
13.1.6	8.58
13.1.7	-170.49
13.1.8	<u>36.22</u>
	1.093.91

Jacksonville Electric Authority
Unit Tested: Northside Unit 2 - Test #2 (50/50 Blend) Boiler Efficiency: 91.74

Test Date: January 28, 2004
Test Start Time: 10:00 AM
Test End Time: 4:00 PM

Test Duration, hours: 4

		As Tested Percent Loss
13.1.9	Dry Flue Gas	4.84
13.1.10	Moisture In Fuel	0.60
13.1.11	H2O From H2 In Fuel	3.50
13.1.12	Unburned Combustibles In Refuse	0.27
13.1.13	Dry Refuse	-0.01
13.1.14	Moisture In Combustion Air	0.06
13.1.15	Calcination/Sulfation	-1.29
13.1.16	Radiation & Convection	0.27
		8.26
13.2	Boiler Efficiency (100 - Total Losses), percent	91.74

14. HEAT INPUT TO WATER & STEAM

14.1 Enthalpies

14.1.1	Feedwater, Btu/lb	468.53	Btu/lb
14.1.2	Blow Down, Btu/lb	738.47	Btu/lb
14.1.3	Sootblowing, Btu/lb	0.00	Btu/lb
14.1.4	Desuperheating Spray Water - Main Steam, Btu/lb	269.63	Btu/lb
14.1.5	Main Steam, Btu/lb	1462.92	Btu/lb
14.1.6	Desuperheating Spray Water - Reheat Steam, Btu/lb	287.42	Btu/lb
14.1.7	Reheat Steam - Reheater Inlet, Btu/lb	1291.55	Btu/lb
14.1.8	Reheat Steam - Reheater Outlet, Btu/lb	1521.67	Btu/lb
14.2 Heat Output		2,251,429,948 2,253,136,163	Btu/h

15. HIGHER HEATING VALUE FUEL HEAT INPUT

15.1 Determine Fuel Heat Input Based on Calculated Efficiency

15.1.1	Fuel Heat Input	2,454,020,283	Btu/h
15.1.2	Fuel Burned - CALCULATED	185,199	lb/h
15.1.3	Difference Assumed versus Calculated Fuel Burned	-0.000322748	percent

Fuel Capability Demonstration Test Report #2 - ATTACHMENTS 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

ATTACHMENT C CAE Test Report

Black & Veatch Corporation 10751 Deerwood Park Boulevard, Suite 130 Jacksonville, FL 32256

REPORT ON LARGE SCALE CFB COMBUSTION DEMONSTRATION PROJECT 50% PITTSBURGH NO. 8 COAL 50% PETROLEUM COKE

Performed for:

BLACK & VEATCH CORPORATION UNIT 2, SDA INLET AND STACK JEA - NORTHSIDE GENERATING STATION

Client Reference No: 137064.96.1400 CleanAir Project No: 9475-2 Revision 0: March 9, 2004

To the best of our knowledge, the data presented in this report are accurate and complete and error free, legible and representative of the actual emissions during the test program.

Robert A. Preksta
Project Manager
(412) 787-9130

Reviewed by,

Timothy D. Rodak
Manager, Pittsburgh Regional Office

bpreksta@cleanair.com

CO	NTENTS	
1	PROJECT OVERVIEW	1-1
•	Table 1-1: Summary of Air Emission Field Test Program	
	Table 1-2: Summary of Test Results	
	PROJECT MANAGER'S COMMENTS	
2	RESULTS	
	Table 2-1: Unit 2 – SDA Inlet – Sulfur Dioxide, Run 1 through 3	2-1
	Table 2-2: Unit 2 – SDA Inlet – Sulfur Dioxide, Run 4 through 6	2-2
	Table 2-3: Unit 2 – SDA Inlet – Particulate Matter, Runs 1 through 3	2-3
	Table 2-4: Unit 2 – SDA Inlet – Particulate Matter, Runs 4 through 6	2-4
	Table 2-5: Unit 2 – SDA Inlet – Mercury (Ontario Hydro)	2-5
	Table 2-6: Unit 2 – Stack – Particulate Matter	2-6
	Table 2-7: Unit 2 – Stack - Fluoride	2-7
	Table 2-8: Unit 2 – Stack – Lead	2-8
	Table 2-9: Unit 2 – Stack – Mercury (Ontario Hydro)	2-9
	Table 2-10: Unit 2 – Stack - Ammonia	2-10
3	DESCRIPTION OF INSTALLATION	3-1
	PROCESS DESCRIPTION	3-1
	Figure 3-1: Process Schematic	3-1
	DESCRIPTION OF SAMPLING LOCATION(S)	3-2
	Table 3-1: Sampling Points	3-2
	Figure 3-2: SDA Inlet Sampling Point Determination (EPA Method 1)	3-3
	Figure 3-3: Stack Sampling Point Determination (EPA Method 1)	3-4
4	METHODOLOGY	4-1
-	Table 4-1: Summary of Sampling Procedures	
5	APPENDIX	5-1
•	TEST METHOD SPECIFICATIONS	
	SAMPLE CALCULATIONS	B
	PARAMETERS	C
	QA/QC DATA	D
	FIELD DATA	
	FIELD DATA PRINTOUTS	
	LABORATORY DATA	
	FACILITY OPERATING DATA	H

PROJECT OVERVIEW

1-1

The Northside Generating Station Repowering project provided JEA (formerly the Jacksonville Electric Authority) with the two largest circulating fluidized bed (CFB) boilers in the world. The agreement between the US Department of Energy (DOE) and JEA covering DOE participation in the Northside Unit 2 project required JEA to demonstrate the ability of the unit to utilize a variety of different fuels. Black and Veatch Corporation (B&V) contracted Clean Air Engineering, Inc. (CleanAir) to perform the air emission measurements required as part of the demonstration test program. This report covers air emission measurements obtained during the firing of a blend of 50% Pittsburgh No. 8 coal and 50% Petroleum Coke to the unit.

The test program included the measurement of the following parameters:

- particulate matter (PM), [SDA Inlet and Stack];
- sulfur dioxide (SO₂), [SDA Inlet];
- fluoride (F), [Stack];
- lead (Pb), [Stack];
- speciation of mercury (Hg⁰, Hg²⁺, Hg^{tp}), [SDA Inlet and Stack];
- ammonia (NH₃).

The field portion of the test program took place at the Unit 2 SDA Inlet and Stack locations on January 27 and 28, 2004. Coordinating the field portion of the testing were:

T. Compaan – Black and Veatch

R. Huggins – Black and Veatch

W. Goodrich - JEA

K. Davis - JEA

J. Martin - RMB

J. Stroud - Clean Air Engineering

Table 1-1 contains a summary of the specific test locations, various reference methods and sampling periods for each of the sources sampled during the program.

The results of the test program are summarized in Table 1-2. A more detailed presentation of the test data is contained in Tables 2-1 through 2-10. Process data collected during the test program is contained in Appendix H.

PROJECT OVERVIEW

1-2

Table 1-1: Summary of Air Emission Field Test Program

Run					Start	End	
Number	Location	Method	Analyte	Date	Time	Time	Notes
1	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/27/04	11:35	12:44	
2	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/27/04	13:11	14:18	
3	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/27/04	14:57	16:04	
1	Unit 2 - SDA Inlet	Method 6C	SO2	1/27/04	11:35	12:35	
2	Unit 2 - SDA Inlet	Method 6C	SO2	1/27/04	13:11	14:11	
3	Unit 2 - SDA Inlet	Method 6C	SO2	1/27/04	14:57	15:57	
1	Unit 2 - SDA Inlet	Ontario Hydro	Mercury	1/27/04	11:30	13:36	
2	Unit 2 - SDA Inlet	Ontario Hydro	Mercury	1/27/04	14:58	17:57	
3	Unit 2 - SDA Inlet	Ontario Hydro	Mercury	1/27/04	18:14	20:26	
1	Unit 2 Stack	USEPA Method 5/29	Particulate/Metals	1/27/04	08:00	10:07	
2	Unit 2 Stack	USEPA Method 5/29	Particulate/Metals	1/27/04	10:35	12:43	
3	Unit 2 Stack	USEPA Method 5/29	Particulate/Metals	1/27/04	13:08	15:20	
1	Unit 2 Stack	Ontario Hydro	Mercury	1/27/04	11:30	13:39	
2	Unit 2 Stack	Ontario Hydro	Mercury	1/27/04	14:58	17:54	
3	Unit 2 Stack	Ontario Hydro	Mercury	1/27/04	18:14	20:23	
4	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/28/04	10:00	11:03	
5	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/28/04	11:10	12:16	
6	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/28/04			(1)
7	Unit 2 - SDA Inlet	USEPA Method 17	Particulate	1/28/04	15:00	16:03	. ,
4	Unit 2 - SDA Inlet	Method 6C	SO2	1/28/04	10:01	11:01	
5	Unit 2 - SDA Inlet	Method 6C	SO2	1/28/04	11:10	12:10	
6	Unit 2 - SDA Inlet	Method 6C	SO2	1/28/04	12:19	12:54	(1)
7	Unit 2 - SDA Inlet	Method 6C	SO2	1/28/04	15:00	16:00	. ,
1	Unit 2 Stack	USEPA Method 13B	Total Fluorides	1/28/04			(2)
2	Unit 2 Stack	USEPA Method 13B	Total Fluorides	1/28/04	10:02	11:11	. ,
3	Unit 2 Stack	USEPA Method 13B	Total Fluorides	1/28/04	11:24	12:30	
3	Unit 2 Stack	USEPA Method 13B	Total Fluorides	1/28/04			(1)
5	Unit 2 Stack	USEPA Method 13B	Total Fluorides	1/28/04	15:00	16:04	
1	Unit 2 Stack	CTM-027	Ammonia	1/28/04	08:00	09:08	
2	Unit 2 Stack	CTM-027	Ammonia	1/28/04	10:02	11:11	
3	Unit 2 Stack	CTM-027	Ammonia	1/28/04	11:34	12:39	

Notes

030404 135411

¹ EPA Method 6C - Run 6, EPA Method 13B - Run 4, EPA Method 17 - Run 6 voided to due plant problems.

² EPA Method 13B, Run 1 voided. Post-test leak check rate exceeded.

PROJECT OVERVIEW

Table 1-2: Summary of Test Results

Source Constituent	Sampling Method	Average Emission
Unit 2 SDA Inlet Sulfur Dioxide (ppmdv), Runs 1-3 Sulfur Dioxide F _d -based, (lb/MMBtu), Runs 1-3 Sulfur Dioxide F _c -based, (lb/MMBtu), Runs 1-3 Sulfur Dioxide (ppmdv), Runs 4-6 Sulfur Dioxide (ppmdv), Runs 4-6 Sulfur Dioxide F _d -based, (lb/MMBtu), Runs 4-6 Sulfur Dioxide F _c -based, (lb/MMBtu), Runs 4-6 Particulate (gr/dscf), Runs 1-3 Particulate F _c -based, (lb/MMBtu), Runs 1-3 Particulate (gr/dscf), Runs 4-6 Particulate (gr/dscf), Runs 4-6 Particulate F _d -based, (lb/MMBtu), Runs 4-6 Particulate F _c -based, (lb/MMBtu), Runs 4-6 Mercury (lb/hr) Mercury F _d -based, (lb/MMBtu) Mercury F _c -based, (lb/MMBtu)	EPA M6C EPA M6C/19 EPA M6C/19 EPA M6C EPA M6C/19 EPA M6C/19 EPA M17 EPA M17/19 EPA M17/19 EPA M17/19 EPA M17/19 Ontario Hydro/19 Ontario Hydro/19	99.8 0.2026 0.1965 135.6 0.2771 0.2718 6.025 10.478 10.088 5.379 9.563 9.307 6.615E-02 2.274E-05 2.171E-05
Unit 2 Stack Particulate (gr/dscf) Particulate (lb/hr) Particulate F _d -based, (lb/MMBtu) Particulate F _c -based, (lb/MMBtu) Pluoride (lb/hr) Fluoride F _d -based, (lb/MMBtu) Fluoride F _c -based, (lb/MMBtu) Lead (lb/hr) Lead F _d -based, (lb/MMBtu) Lead F _c -based, (lb/MMBtu) Mercury (lb/hr) Mercury F _d -based, (lb/MMBtu) Mercury F _c -based, (lb/MMBtu) Mercury (% Removal) Ammonia (ppmdv) Ammonia (lb/hr) Ammonia F _d -based, (lb/MMBtu) Ammonia F _d -based, (lb/MMBtu)	EPA M5 EPA M5 EPA M5/19 EPA M5/19 EPA M5/19 EPA M13B/19 EPA M13B/19 EPA M29 EPA M29/19 EPA M29/19 Ontario Hydro Ontario Hydro/19 Ontario Hydro/19 Ontario Hydro/19 CTM-027 CTM-027 CTM-027/19 CTM-027/19	0.0022 11.52 0.0041 0.0040 <0.0478 <1.69E-05 <1.69E-05 2.311E-03 8.224E-07 8.087E-07 <2.360E-02 <8.532E-06 <8.251E-06 53.5 0.325 0.564 0.0002 0.0002

Notes:

- The mass emission rate (lb/MMBtu) presented in the above table for all test parameters was calculated using a dry fuel factor (F_d) of 9,851 dscf/MMBtu and a carbon-based fuel factor (F_c) of 1,837 scf/MMBtu.
- 2. Total mercury emission results are shown on above table. A speciated breakdown of the mercury emissions is contained in Section 2 of the report.
- 3. Percent removal efficiency was calculated based on the units of F_d-based lb/MMBtu.

1-3

PROJECT OVERVIEW

PROJECT MANAGER'S COMMENTS

Ontario Hvdro Test Results

Each Ontario Hydro sampling train consists of five (5) sample fractions. These fractions, starting from the sampling nozzle, consist of:

- 1. 0.1N HNO₃ (Front-half Rinse)
- 2. Filter
- 3. KCl (Impingers 1 through 3)
- 4. HNO₃-H₂O₂ (Impinger 4)
- 5. KMnO4 (Impingers 5 through 7)

An aliquot of each reagent and an unused filter are placed in pre-cleaned sample containers and labeled as Reagent Blanks. In addition, a sampling train is prepared, taken to the respective sampling location, leak-checked and allowed to remain at the sampling location a duration comparable to the length of a sampling run. The train is then recovered and each of the five fractions listed above are labeled as a Field Train Blanks.

Laboratory results indicated elevated mercury levels in the Fraction 4 (HNO₃-H₂O₂, Elemental Mercury Fraction) of the Reagent Blank and the Field Train Blanks (SDA Inlet and Stack) [Appendix G].

The mercury concentration in the remaining four sample fractions of the Reagent and Field Blanks were at acceptable levels or below the method detection limit.

The Ontario Hydro Method maximum allowable blank adjustment, outlined in Section 13.41, is based on the following criteria:

- 1. 10% of the measured regent blank value (6.20 ug) or,
- 2. Ten (10) times the method detection limit of 0.005 ug (0.05 ug), whichever is less.

The numbers indicated in the parentheses are applicable to fraction 4 (HNO₃-H₂O₂).

In accordance with the above criteria a maximum blank correction of 0.05 ug was applied to the fraction 4 (HNO3-H2O2) data and these results are shown in this report. Review of the laboratory, sampling and recovery procedures indicates that the elevated mercury present in fraction 4 of the samples was most likely attributed to the HNO3-H₂O₂ reagent and present prior to testing. Therefore, in allowing a maximum blank value of 0.05 ug the results may show an emission rate biased higher than those present in the flue gas stream.

1-4

PROJECT OVERVIEW

1-5

Based on the above information, applying a correction to the fraction 4 portion of the sample train equivalent to the fraction 4 value of the respective Field Blank Trains is recommended (i.e., SDA Inlet = 35.8 ug and Stack = 22.6 ug).

Following this modified blank correction procedure the average total mercury emissions (F_d-based lb/MMBtu) at the SDA Inlet and Stack would be 1.426E-05 and 5.434E-07, respectively. This calculates to an average removal efficiency of 97.0%.

RESULTS 2-1

Unit 2 – SDA Inlet	Table 2-1: - Sulfur Dioxid	e. Run 1 th	rough 3	
Run No.	1	2	3	Average
Date (2004)	January 27	January 27	January 27	7.1. O. L. go
Start Time	11:35	13:11	14:57	
End Time	12:35	14:11	15:57	
Elapsed Time	1:00	1:00	1:00	
Operating Conditions				
Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	9,851
Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	1,837
Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Parameters				
Oxygen (dry volume %)	4.1	4.0	4.0	4.0
Carbon dioxide (dry volume %)	15.6	15.5	15.4	15.5
Actual water vapor in gas (% by volume)	7.88	6.81	6.50	7.06
Volumetric flow rate, actual (acfm)	985,459	983,592	983,917	984,323
Volumetric flow rate, standard (scfm)	639,139	632,012	634,453	635,201
Volumetric flow rate, dry standard (dscfm)	588,774	588,994	593,203	590,324
Sulfur Dioxide (SO ₂) Results				
Concentration (ppmdv)	101.9	75.3	122.2	99.8
Mass Emission Rate (lb/hr)	598.5	442.7	723.2	588.1
Mass Emission Rate (ton/year)	2,622	1,939	3,168	2,576
Mass Emission Rate - F _d -based (lb/MMBtu)	0.2077	0.1527	0.2475	0.2026
Mass Emission Rate - F_c -based (lb/MMBtu)	0.1999	0.1481	0.2417	0.1965

RESULTS 2-2

Table 2-2:							
Unit 2 – SDA Inlet – Sulfur Dioxide, Run 4 through 6							
Run No.	4	5	7	Average			
Date (2004)	January 28	January 28	January 28	_			
Start Time	10:01	11:10	15:00				
End Time	11:01	12:10	16:00				
Elapsed Time	1:00	1:00	1:00				
Operating Conditions							
Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	9,851			
Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	1,837			
Capacity factor (hours/year)	8,760	8,760	8,760	8,760			
Gas Parameters							
Oxygen (dry volume %)	4.2	4.1	4.2	4.1			
Carbon dioxide (dry volume %)	15.1	15.2	15.4	15.2			
Actual water vapor in gas (% by volume)	7.05	6.89	6.56	6.84			
Volumetric flow rate, actual (acfm)	966,174	956,170	968,672	963,672			
Volumetric flow rate, standard (scfm)	632,018	632,876	632,315	632,403			
Volumetric flow rate, dry standard (dscfm)	587,468	589,246	590,807	589,174			
Sulfur Dioxide (SO ₂) Results							
Concentration (ppmdv)	144.8	124.4	137.6	135.6			
Mass Emission Rate (lb/hr)	848.7	731.1	811.3	797.0			
Mass Emission Rate (ton/year)	3,717	3,202	3,553	3,491			
Mass Emission Rate - F _d -based (lb/MMBtu)	0.2969	0.2527	0.2817	0.277			
Mass Emission Rate - F _c -based (lb/MMBtu)	0.2931	0.2498	0.2725	0.2718			

2-3

		Гable 2-3:			
	Unit 2 – SDA Inlet – Part	ticulate Matte	er, Runs 1	through 3	
Run No).	1	2	3	Averag
Date (2	004)	Jan 27	Jan 27	Jan 27	
Start Ti	me (approx.)	11:35	13:11	14:57	
Stop Ti	me (approx.)	12:44	14:18	16:04	
Proces	s Conditions				
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Co	onditions				
O_2	Oxygen (dry volume %)	4.2	3.8	4.0	4.0
CO_2	Carbon dioxide (dry volume %)	15.6	15.8	15.6	15.7
T_s	Sample temperature (°F)	315	322	319	31
B_w	Actual water vapor in gas (% by volume)	7.88	6.81	6.50	7.0
Gas Flo	ow Rate				
Q_a	Volumetric flow rate, actual (acfm)	985,459	983,592	983,917	984,32
Q_s	Volumetric flow rate, standard (scfm)	639,139	632,012	634,453	635,20
Q_{std}	Volumetric flow rate, dry standard (dscfm)	588,774	588,994	593,203	590,32
Particu	late Results				
C_{sd}	Particulate Concentration (gr/dscf)	5.3389	7.1792	5.5577	6.025
$E_{lb/hr}$	Particulate Rate (lb/hr)	26,952	36,256	28,268	30,49
$E_{T/yr}$	Particulate Rate (Ton/yr)	118,051	158,802	123,813	133,55
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	9.4060	12.3524	9.6756	10.478
E_Fc	Particulate Rate - F _c -based (lb/MMBtu)	8.9842	11.9281	9.3524	10.088

030404 135422

Revision 0

2-4

		Гable 2-4:			
	Unit 2 – SDA Inlet – Pari		er, Runs 4	through 6	
Run No		4	5	7	Averaç
Date (2	004)	Jan 28	Jan 28	Jan 28	
Start Ti	me (approx.)	10:00	11:10	15:00	
Stop Ti	me (approx.)	11:03	12:16	16:03	
Proces	s Conditions				
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Co	onditions				
O_2	Oxygen (dry volume %)	4.3	4.5	4.2	4.
CO_2	Carbon dioxide (dry volume %)	15.2	15.0	15.4	15.
T_s	Sample temperature (°F)	308	300	310	30
B_{w}	Actual water vapor in gas (% by volume)	7.05	6.89	6.56	6.8
Gas Flo	ow Rate				
Q_a	Volumetric flow rate, actual (acfm)	966,174	956,170	968,672	963,67
Q_{s}	Volumetric flow rate, standard (scfm)	632,018	632,876	632,315	632,40
Q_{std}	Volumetric flow rate, dry standard (dscfm)	587,468	589,246	590,807	589,17
Particu	late Results				
C_{sd}	Particulate Concentration (gr/dscf)	6.2515	6.0481	3.8358	5.378
$E_{lb/hr}$	Particulate Rate (lb/hr)	31,489	30,557	19,431	27,15
$E_{T/yr}$	Particulate Rate (Ton/yr)	137,922	133,840	85,108	118,95
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	11.0801	10.8505	6.7579	9.562
E_Fc	Particulate Rate - F _c -based (lb/MMBtu)	10.7967	10.5848	6.5387	9.306

030404 135424

RESULTS 2-5

		Table 2-5:			
	Unit 2 - SDA Inle	t - Mercury	Ontario H	ydro)	
-				•	
Run No.		1	2	3	Average
Date (200	14)	Jan 27	Jan 27	Jan 27	
Start Time	e (approx.)	11:30	14:58	18:14	
Stop Time	e (approx.)	13:36	17:57	20:26	
Process	Conditions				
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Con	ditions				
O_2	Oxygen (dry volume %)	4.0	4.2	4.3	4.2
CO_2	Carbon dioxide (dry volume %)	15.7	15.6	15.6	15.6
T_s	Sample temperature (°F)	311	315	310	312
B_w	Actual water vapor in gas (% by volume)	7.18	7.47	6.91	7.19
Gas Flow	Rate				
Q_a	Volumetric flow rate, actual (acfm)	993,457	986,276	989,118	989,617
Q_s	Volumetric flow rate, standard (scfm)	647,181	639,188	645,156	643,841
Q_{std}	Volumetric flow rate, dry standard (dscfm)	600,693	591,450	600,596	597,580
Total Mer	cury Results				
$E_{lb/hr}$	Rate (lb/hr)	5.427E-02	7.865E-02	6.553E-02	6.615E-02
$E_{T/yr}$	Rate (Ton/yr)	2.377E-01	3.445E-01	2.870E-01	2.897E-01
E_{Fd}	Rate - Fd-based (lb/MMBtu)	1.834E-05	2.733E-05	2.255E-05	2.274E-05
E_Fc	Rate - Fc-based (lb/MMBtu)	1.762E-05	2.610E-05	2.141E-05	2.171E-05
	te Bound Mercury Results				
$E_{lb/hr}$	Rate (lb/hr)	3.458E-02	4.405E-02	4.110E-02	3.991E-02
$E_{T/yr}$	Rate (Ton/yr)	1.514E-01	1.929E-01	1.800E-01	1.748E-01
E_{Fd}	Rate - Fd-based (lb/MMBtu)	1.169E-05	1.530E-05	1.414E-05	1.371E-05
E_Fc	Rate - Fc-based (lb/MMBtu)	1.122E-05	1.462E-05	1.343E-05	1.309E-05
	Mercury Results				
$E_{lb/hr}$	Rate (lb/hr)	1.751E-04	4.127E-04	4.040E-04	3.306E-04
$E_{T/yr}$	Rate (Ton/yr)	7.671E-04	1.808E-03	1.770E-03	1.448E-03
E_{Fd}	Rate - Fd-based (lb/MMBtu)	5.920E-08	1.434E-07	1.391E-07	1.139E-07
E_Fc	Rate - Fc-based (lb/MMBtu)	5.686E-08	1.370E-07	1.320E-07	1.086E-07
	l Mercury Results				
E _{lb/hr}	Rate (lb/hr)	1.951E-02	3.419E-02	2.403E-02	2.591E-02
E _{T/yr}	Rate (Ton/yr)	8.547E-02	1.498E-01	1.052E-01	1.135E-01
E _{Fd}	Rate - Fd-based (lb/MMBtu)	6.596E-06	1.188E-05	8.269E-06	8.914E-06
E _{Fc}	Rate - Fc-based (lb/MMBtu)	6.335E-06	1.135E-05	7.851E-06	8.511E-06

 $^{^{1}}$ The elemental mercury (HNO₃-H₂O₂ fraction) was calculated using the maximum allowable blank value of (0.05 ug) which is ten (10) times the laboratory detection limit of 0.005 ug.

2-6

		Гable 2-6:			
	Unit 2 – Stac	k – Particula	te Matter		
Run No).	1	2	3	Average
Date (2	004)	Jan 27	Jan 27	Jan 27	
Start Ti	me (approx.)	08:00	10:35	13:08	
Stop Ti	me (approx.)	10:07	12:43	15:20	
Proces	s Conditions				
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Co	onditions				
O_2	Oxygen (dry volume %)	5.4	5.0	4.6	5.0
CO_2	Carbon dioxide (dry volume %)	14.0	14.7	14.9	14.5
T_s	Sample temperature (°F)	226	228	235	229
B_w	Actual water vapor in gas (% by volume)	10.76	10.68	10.52	10.65
Gas Flo	ow Rate				
Q_a	Volumetric flow rate, actual (acfm)	900,538	897,667	896,953	898,386
Q_{s}	Volumetric flow rate, standard (scfm)	689,974	685,607	677,997	684,526
Q_{std}	Volumetric flow rate, dry standard (dscfm)	615,732	612,366	606,699	611,599
Particu	late Results				
C_{sd}	Particulate Concentration (gr/dscf)	0.0018	0.0024	0.0024	0.0022
$E_{lb/hr}$	Particulate Rate (lb/hr)	9.32	12.57	12.68	11.52
$E_{T/yr}$	Particulate Rate (Ton/yr)	40.82	55.07	55.54	50.47
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.0034	0.0044	0.0044	0.0041
E_Fc	Particulate Rate - F _c -based (lb/MMBtu)	0.0033	0.0043	0.0043	0.0040

L P P @_K

2-7

		Table 2-7:					
Unit 2 – Stack - Fluoride							
Run No).	2	3	5	Average		
Date (2	004)	Jan 28	Jan 28	Jan 28			
Start Ti	me (approx.)	10:02	11:24	15:00			
Stop Ti	me (approx.)	11:11	12:30	16:04			
Proces	s Conditions						
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851			
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837			
Сар	Capacity factor (hours/year)	8,760	8,760	8,760			
Gas Co	onditions						
O_2	Oxygen (dry volume %)	5.2	4.9	4.8	5.0		
CO_2	Carbon dioxide (dry volume %)	14.3	14.7	14.8	14.6		
T_s	Sample temperature (°F)	235	226	222	227		
B_{w}	Actual water vapor in gas (% by volume)	8.51	8.92	9.18	8.87		
Gas Flo	ow Rate						
Q_{a}	Volumetric flow rate, actual (acfm)	870,686	867,477	867,526	868,563		
Q_s	Volumetric flow rate, standard (scfm)	661,986	668,606	672,322	667,638		
Q_{std}	Volumetric flow rate, dry standard (dscfm)	605,644	608,958	610,603	608,402		
Hydrog	jen Fluoride (HF) Results ¹						
C_{sd}	HF Concentration (ppmdv)	<0.0258	<0.0201	<0.0298	<0.0253		
$E_{lb/hr}$	HF Rate (lb/hr)	< 0.0487	<0.0381	<0.0567	<0.0478		
$E_{T/yr}$	HF Rate (Ton/yr)	< 0.2134	<0.1668	<0.2485	<0.2096		
E_{Fd}	HF Rate - Fd-based (lb/MMBtu)	<1.76E-05	<1.34E-05	<1.98E-05	<1.69E-05		
E_Fc	HF Rate - Fc-based (lb/MMBtu)	<1.72E-05	<1.30E-05	<1.92E-05	<1.65E-05		

The "less than" sign indicates that the sample was below the laboratory minimum detection limit of 0.06 mg/liter. The minimum detection limit was used in the calculations.

JQK@_O

		Table 2-8:			
	Unit 2	! – Stack – L	ead		
Run No).	1	2	3	Averag
Date (2	004)	Jan 27	Jan 27	Jan 27	
Start Ti	me (approx.)	08:00	10:35	13:08	
Stop Ti	me (approx.)	10:07	12:43	15:20	
Proces	s Conditions				
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Co	onditions				
O_2	Oxygen (dry volume %)	5.4	5.0	4.6	5.0
CO_2	Carbon dioxide (dry volume %)	14.0	14.7	14.9	14.5
T_s	Sample temperature (°F)	226	228	235	229
B_w	Actual water vapor in gas (% by volume)	10.76	10.68	10.52	10.65
Gas Flo	ow Rate				
Q_{a}	Volumetric flow rate, actual (acfm)	900,538	897,667	896,953	898,386
Q_s	Volumetric flow rate, standard (scfm)	689,974	685,607	677,997	684,526
Q_{std}	Volumetric flow rate, dry standard (dscfm)	615,732	612,366	606,699	611,599
Lead R	esults - Total				
$E_{lb/hr}$	Rate (lb/hr)	4.712E-03	5.092E-04	1.711E-03	2.311E-03
$E_{T/yr}$	Rate (Ton/yr)	2.064E-02	2.230E-03	7.495E-03	1.012E-02
E_{Fd}	Rate - Fd-based (lb/MMBtu)	1.694E-06	1.795E-07	5.938E-07	8.224E-07
E_Fc	Rate - Fc-based (lb/MMBtu)	1.673E-06	1.732E-07	5.796E-07	8.087E-07

2-8

RESULTS

2-9

	Huit O. Otaala	Table 2-9:		dua)	
	Unit 2 – Stack	– Mercury (C	ntario Hy	aro)	
Run No.		1	2	3	Average
Date (200	04)	Jan 27	Jan 27	Jan 27	
Start Time	(approx.)	11:30	14:58	18:14	
Stop Time	e (approx.)	13:39	17:54	20:23	
Process	Conditions				
F _d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F _c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Con	ditions				
O_2	Oxygen (dry volume %)	5.0	4.7	4.8	4.8
CO_2	Carbon dioxide (dry volume %)	14.9	14.8	14.8	14.8
T_s	Sample temperature (°F)	215	222	232	223
B_w	Actual water vapor in gas (% by volume)	10.64	10.23	10.51	10.46
Gas Flow					
Q_a	Volumetric flow rate, actual (acfm)	843,739	846,892	885,409	858,680
Q_s	Volumetric flow rate, standard (scfm)	651,187	653,047	672,266	658,833
Q_{std}	Volumetric flow rate, dry standard (dscfm)	581,926	586,245	601,600	589,924
	rcury Results				
$E_{lb/hr}$	Rate (lb/hr)	<2.083E-02	<2.326E-02	<2.672E-02	<2.360E-02
$E_{T/yr}$	Rate (Ton/yr)	<9.126E-02	<1.019E-01	<1.170E-01	<1.034E-01
E_{Fd}	Rate - Fd-based (lb/MMBtu)	<7.727E-06	<8.404E-06	<9.465E-06	<8.532E-06
E_Fc	Rate - Fc-based (lb/MMBtu)	<7.357E-06	<8.208E-06	<9.187E-06	<8.251E-06
RE	Removal Efficiency (%) Fd-based (lb/MMBtu)	57.9%	54.2%	48.4%	53.5%
	te Bound Mercury Results				
E _{lb/hr}	Rate (lb/hr)	<2.040E-06	<2.052E-06	<2.112E-06	<2.068E-06
E _{T/yr}	Rate (Ton/yr)	<8.933E-06	<8.988E-06	<9.250E-06	<9.057E-06
E _{Fd}	Rate - Fd-based (lb/MMBtu)	<7.564E-10	<7.414E-10	<7.482E-10	<7.487E-10
E _{Fc}	Rate - Fc-based (lb/MMBtu)	<7.202E-10	<7.241E-10	<7.262E-10	<7.235E-10
	Mercury Results				
E _{lb/hr}	Rate (lb/hr)	<4.079E-05	<4.104E-05	8.447E-05	<5.544E-05
E _{T/yr}	Rate (Ton/yr)	<1.787E-04	<1.798E-04	3.700E-04	<2.428E-04
E _{Fd}	Rate - Fd-based (lb/MMBtu)	<1.513E-08	<1.483E-08	2.993E-08	<1.996E-08
E_Fc	Rate - Fc-based (lb/MMBtu)	<1.440E-08	<1.448E-08	2.905E-08	<1.931E-08
	al Mercury Results				
E _{lb/hr}	Rate (lb/hr)	2.081E-02	2.324E-02	2.663E-02	2.356E-02
E _{T/yr}	Rate (Ton/yr)	9.116E-02	1.018E-01	1.166E-01	1.032E-01
E _{Fd}	Rate - Fd-based (lb/MMBtu)	7.719E-06	8.397E-06	9.435E-06	8.517E-06
E _{Fc}	Rate - Fc-based (lb/MMBtu)	7.349E-06	8.200E-06	9.157E-06	8.236E-06

¹ Less than symbol indicates that one or more factions (oxidized mercury) were below the laboratory minimum detection limit. Any fraction below the minimum detection limit was calculated using a value of 0.5 times the non-detect value.

² Removal efficiency calculate using F_d-based (lb/MMBtu)

 $^{^3}$ The elemental mercury (HNO₃-H₂O₂ fraction) was calculated using the maximum allowable blank value of (0.05 ug) which is ten (10) times the laboratory detection limit of 0.005 ug.

2-10

		able 2-10:			
	Unit 2 –	Stack - Amn	nonia		
Run No).	1	2	3	Average
Date (2	004)	Jan 28	Jan 28	Jan 28	
Start Ti	me (approx.)	08:00	10:02	11:34	
Stop Tir	me (approx.)	09:08	11:11	12:39	
Proces	s Conditions				
F_d	Oxygen-based F-factor (dscf/MMBtu)	9,851	9,851	9,851	
F_c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,837	1,837	1,837	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Co	onditions				
O_2	Oxygen (dry volume %)	5.0	5.1	4.9	5.0
CO_2	Carbon dioxide (dry volume %)	14.4	14.4	14.6	14.5
T_s	Sample temperature (°F)	221	237	227	228
B_w	Actual water vapor in gas (% by volume)	7.20	8.99	8.74	8.31
Gas Flo	ow Rate				
Q_a	Volumetric flow rate, actual (acfm)	952,145	917,860	910,351	926,785
Q_s	Volumetric flow rate, standard (scfm)	739,165	695,434	699,865	711,488
$\mathbf{Q}_{\mathrm{std}}$	Volumetric flow rate, dry standard (dscfm)	685,981	632,929	638,684	652,531
Ammor	nia (NH₃) Results				
$C_{\sf sd}$	Ammonia Concentration (ppmdv)	0.3656	0.3027	0.3068	0.3250
$E_{lb/hr}$	Ammonia Rate (lb/hr)	0.6647	0.5079	0.5194	0.5640
$E_{T/yr}$	Ammonia Rate (Ton/yr)	2.9114	2.2245	2.2748	2.4702
E_{Fd}	Ammonia Rate - Fd-based (lb/MMBtu)	0.0002	0.0002	0.0002	0.0002
E_Fc	Ammonia Rate - Fc-based (lb/MMBtu)	0.0002	0.0002	0.0002	0.0002

030404 135438

Revision 0

DESCRIPTION OF INSTALLATION

3-1

PROCESS DESCRIPTION

The Jacksonville Electric Northside Generating Station Unit 2 consists of a 300 MW circulating fluidized bed (CFB) boiler a lime-based spray dryer absorber (SDA) and a pulse jet fabric filter (PJFF).

The SDA has sixteen independent dual-fluid atomizers. The fabric filter has eight isolatable compartments. The control system also uses reagent preparation and byproduct handling subsystems. The SDA byproduct solids/fly ash collected by the PJFF is pneumatically transferred from the PJFF hoppers to either the Unit 2 fly ash silo or the Unit 2 AQCS recycle bin. Fly ash from the recycle bin is slurried and reused as the primary reagent by the SDA spray atomizers. The reagent preparation system converts quicklime (CaO), which is delivered dry to the station, into a hydrated lime [Ca(OH)₂] slurry, which is fed to the atomizers as a supplemental reagent.

The testing reported in this document was performed at the Unit 2 SDA Inlet and Stack locations.

A schematic of the process indicating sampling locations is shown in Figure 3-1.

Figure 3-1: Process Schematic

DESCRIPTION OF INSTALLATION

3-2

DESCRIPTION OF SAMPLING LOCATION(S)

Sampling point locations were determined according to EPA Method 1.

Table 3-1 outlines the sampling point configurations. Figure 3-3 and 3-3 illustrate the sampling points and orientation of sampling ports for each of the sources tested in the program.

Table 3-1: Sampling Points

Location Unit 2 SDA Inlet Unit 2 SDA Inlet Unit 2 SDA Inlet Unit 2 SDA Inlet	Constituent SO2 Particulate Mercury	Method 6C 17 OH ²	Run No. 1-7 1-7 1-3	Ports 1 4 4	Points per Port 1 6 6	Minutes per Point 60 ¹ 2.5 5	Total Minutes 60 60 120	Figure N/A 3-1 3-1
Unit 2 Stack Unit 2 Stack Unit 2 Stack Unit 2 Stack Unit 2 Stack	Particulate Fluoride Lead Mercury Ammonia	5 13B 29 OH ² CTM-027	1-3 1-5 1-3 1-3 1-3	4 4 4 4	3 3 3 3	10 5 10 10 5	120 60 120 120 60	3-2 3-2 3-2 3-2 3-2

¹ Sulfur Dioxide was sampled from a single point in the duct. Readings were collected at one-second intervals by the computer based data acquisition system and reported as one-minute averages.

² Mercury was determined using the Ontario Hydro method.

Figure 3-2: SDA Inlet Sampling Point Determination (EPA Method 1)

3-3

Figure 3-3: Stack Sampling Point Determination (EPA Method 1)

3-4

METHODOLOGY

4-1

Clean Air Engineering followed procedures as detailed in U.S. Environmental Protection Agency (EPA) Methods 1, 2, 3A, 4, 5, 6C, 13B, 23, 29, Conditional Test Method CTM-027 and the Ontario Hydro Method. The following table summarizes the methods and their respective sources.

Table 4-1: Summary of Sampling Procedures

Title 40 CFR Par	t 60 Appendix A
Method 1	"Sample and Velocity Traverses for Stationary Sources"
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"
Method 3A	"Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 4	"Determination of Moisture Content in Stack Gases"
Method 5	"Determination of Particulate Emissions from Stationary Sources"
Method 6C	"Determination of Sulfur Dioxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 13B	"Determination of Total Fluoride Emissions from Stationary Sources (Specific Ion Electrode Method)"
Method 23	"Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans from Stationary Sources"
Method 29	"Determination of Metals Emissions from Stationary Sources"
Conditional Test	
CTM-027	"Procedure for the Collection and Analysis of Ammonia in Stationary Sources."
<u>Draft Methods</u> Ontario Hydro	"Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources."

The EPA Methods (1 through 29) appear in detail in Title 40 of the Code of Federal Regulations (CFR). The Conditional Test Method and the Hydro Ontario Method appear in detail on the US EPA Emissions Measurement Center web page. All methods may be found on the World Wide Web at http://www.cleanair.com.

Diagrams of the sampling apparatus and major specifications of the sampling, recovery and analytical procedures are summarized for each method in Appendix A.

Clean Air Engineering followed specific quality assurance and quality control (QA/QC) procedures as outlined in the individual methods and in USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods", EPA/600/R-94/038C. Additional QA/QC methods as prescribed in Clean Air's internal Quality Manual were also followed. Results of all QA/QC activities performed by Clean Air Engineering are summarized in Appendix D.

BLACK & VEATCH CORPORATION JEA - NORTHSIDE GENERATING STATION

Client Reference No: 137064.96.1400 CleanAir Project No: 9475-2

APPENDIX	
TEST METHOD SPECIFICATIONS	A
SAMPLE CALCULATIONS	B
PARAMETERS	C
QA/QC DATA	D
FIELD DATA	E
FIELD DATA PRINTOUTS	F
LABORATORY DATA	G
FACILITY OPERATING DATA	Н

Fuel Capability Demonstration Test Report #2 - ATTACHMENTS 50 / 50 Blend Petroleum Coke and Pittsburgh 8 Coal Fuel

ATTACHMENT D PI Data Summary

JEA Northside Unit 2 Test #2

50 / 50 Blend - Pittsburgh 8 Coal Pet Coke SUMMARY PI DATA

Date: January 27, 2004 January 28, 2004 Start: 1130 hours 1000 hours End: 1530 hours 1600 hours

<u>Substance</u>	Characteristic Being Measured	Values Used in Effic	Values Used in Efficiency Calculation	
Primary Air	Avg. Out A and B, Deg F	102.7	87.5	
	Average, deg F	108.0	95.7	
	Count	480	480	
	Standard Deviation	2.8720	7.0768	
	Total SA flow, klb/hr	0.7020	0.61	
	Average, Total SA Flow, klb/hr	0.7011	0.63	
	Count	240	240	
Secondary Air	Standard Deviation	0.0084	0.0458	
Secondary An	Avg. Out A and B, Deg F	103.4	88.65	
	Average, deg F	109.7	95.30	
	Count	480	480	
	Standard Deviation	6.8505	7.4273	
	Total Flow, klb/hr	194.5	195.12	
Fuel	Average, deg F	194.2	195.18	
ruei	Count	240	240	
	Standard Deviation	0.3008	0.4515	
	Gas Out, deg F, A train	295.7	288.10	
PAHTR Gas	Gas Out, deg F, B train	309.3	303.83	
Out	Average, deg F	311.1	298.65	
Out	Count	480	480	
	Standard Deviation	7.7917	8.2852	
	Gas Out, deg F, A train	288.4	286.55	
SAHTR Gas	Gas Out, deg F, B train	288.2	294.79	
Out	Average, deg F	289.8	282.62	
	Count	480	480	
	Standard Deviation	11.8296	11.2515	
	Gas In, deg F, A & B train	563.7	575.73	
PAH Gas In	Average, deg F	572.5	568.58	
	Count	240	240	
	Standard Deviation	4.8307	4.5239	
	Gas In, deg F A & B train	566.6	579.20	
SAH Gas In	Average, deg F	575.7	571.83	
	Count Standard Deviation	240	240	
	Statidate Deviation	5.0519	4.7635	
	Air Out, deg F A & B train	461.6	464.06	
PAH Air Out	Average, deg F	470.7	461.60	
	Count Standard Deviation	240 4.0990	240 3.4760	
	Air Out, deg F A & B train	431.3	441.20	
SA Airheater	Average, deg F	434.3	435.22	
Air Out	Count Standard Deviation	240	240	
	Standard Deviation	3.12231	3.98815	

JEA Northside Unit 2 Test #2 50 Blend - Pittsburgh 8 Coal

50 / 50 Blend - Pittsburgh 8 Coal Pet Coke SUMMARY PI DATA

<u>Substance</u>	Characteristic Being Measured	Values Used in Effic	ciency Calculation
Stripper/ Coolers - A, B, C, D	Ash leaving temperature, deg F, A Ash leaving temperature, deg F, B Ash leaving temperature, deg F, C Ash leaving temperature, deg F, D Average, deg F Count Standard Deviation	0.0 0.0 0.0 0.0 0.0 480 0.0000	0.00 0.00 0.00 0.00 0.00 480 0.000
SDA Hopper	Temperature, deg F Average, deg F Count Standard Deviation	210.3 240 3.9223	209.95 240 6.2670
Limestone Feed Rate 1	Feedrate, feeders 1, 2, 3, klb/hr Average, klb/hr Count Standard Deviation	72.3 66.4 240 11.6244	65.25 73.0 240 3.9721
SO2, in flue Gas	AH inlet, ppm Average, ppm mv Count Standard Deviation	27.1 240 13.6302	51.87 240 15.4369
Intrex Blower Air Flow	Flow to A, B, C, lb/hr Average, lb/hr Count Standard Deviation	35896.6 35790.2 1440 98.0315	35776.20 35983.87 1440 158.7149
Intrex Seal Pot Blower	PA Flow to Intrex A, B, C, Ib/hr Average, Ib/hr Count Standard Deviation	45404.1 44706.3 240 1010.0263	45975.88 45157.57 240 972.9776
Intrex Blower Exit Air Temp	Average, deg F Count Standard Deviation	165.8 240 2.8880	150.41 240 6.2597
Seal Pot Blower Exit Air Temp	Average, deg F Count Standard Deviation	178.3 240 3.6163	162.09 240 5.4888
Feedwater Temperature to Econ	Average, deg F Count Standard Deviation	484.3 240 1.1649	483.53 240 0.8814
Feedwater Pressure to Econ	Average, psiG Count Standard Deviation	1533.2 240 5.8658	1501.89 240 19.6988
(DSH)SH-1 Spray Flow	Average, klb/hr Count Standard Deviation	19.1 240 2.2703	22.82 240 4.1563

JEA Northside Unit 2 Test #2

50 / 50 Blend - Pittsburgh 8 Coal Pet Coke SUMMARY PI DATA

Substance	Characteristic Being Measured	Values Used in Effic	ciency Calculation
SH-1 Spray Temperature	Average, deg F	303.0	295.14
	Count	240	240
	Standard Deviation	1.8619	4.2962
SH-1 Spray	Average, psiG	2700.6	2699.71
Pressure	Count	240	240
	Standard Deviation	8.1842	5.2985
	Average of three pressure values	2562.8	2561.88
Drum Pressure	Average, psiG	2561.5	2561.98
	Count	720	720
	Standard Deviation	8.2880	5.1986
Main Steam	Average, deg F	1003.5	1002.70
Temperature	Count Standard Deviation	240.0	240
	Standard Deviation	1.5012	0.7836
	Average of two pressure values	2403.3	998.74
Main Steam	Average, psiG	2400.7	999.81
Pressure	Count	480.0	480
	Standard Deviation	5.5393	1.0825
	Average of three temp values	1008.4	1007.91
Reheater Outlet		1007.5	1008.17
Temperature		720.0	720
	Standard Deviation	3.5757	1.5791
	Average of two pressure values	567.6	566.6
Reheater Outlet		569.1	565.4
Pressure	Count	480	480
	Standard Deviation	25.8969	25.6913
CRH Ent	Average, deg F	604.0	599.83
Attemp Temp	Count	240.0	240
	Standard Deviation	4.8862	7.7452
CRH Ent	Average, psiG	568.4	564.91
Attemp Press	Count	240.0	240
Attemptions	Standard Deviation	6.9791	5.5262
	Average, klb/hr	1.4	2.16
RH Spray Flow		240	240
	Standard Deviation	2.4150	3.0002
	Average, deg F	300.9	316.17
RH Spray Temp		240	240
	Standard Deviation	28.2255	16.4067
RH Spray	Average, psiG	713.7	708.45
Pressure	Count Standard Deviation	240	240
	Standard Deviation	24.1003	28.4373

JEA Northside Unit 2 Test #2 50 / 50 Blend - Pittsburgh 8 Coal Pet Coke

SUMMARY PI DATA

Substance	Characteristic Being Measured	Values Used in Efficiency Calculation	
	Data	417.6	417
116 4 FW	Data	483.8	484.2
Htr 1 FW	Average, deg F	451.1	450.25
Entering Temp	Count	480	480
	Standard Deviation	33.2734	33.3245
	Data	1541.9	1521.5
Htr 1 FW	Data	1541.9	1521.5
Entering	Average, psiG	1533.2	1501.9
Pressure	Count	480	480
	Standard Deviation	5.8597	19.6782
Htr 1 FW	Average, deg F	484.3	483.53
Leaving Temp	Count	240	240
Leaving Temp	Standard Deviation	1.1649	0.8814
Htr 1 FW	Average, psiG	1533.2	1501.9
Leaving	Count	240	240
Pressure	Standard Deviation	5.8658	19.6988
Htr 1 Extraction	Average, deg F	632.7	630.3
Stm Temp	Count	240	240
	Standard Deviation	2.3422	1.1165
Htr 1 Extraction	Average, psiG	572.0	568.2
Stm Pressure	Count	240	240
0	Standard Deviation	6.7983	5.5608
Htr 1 Drain	Average, deg F	423.1	422.3
Temp	Count	240	240
··· r	Standard Deviation	0.9820	0.8009
Htr 1 Drain	Average, psiG	572.0	568.2
Pressure	Count	240.0	240
11000010	Standard Deviation	6.7983	5.5608
Feedwater to	Pressure, psiG	1556.6	1536.4
Econ	Temperature, deg F	483.8	484.2
LCOII	Density, lb / cu. ft.	0.01990	0.0199
	Total of three flow values	47.6	48.2
-	Average, k lb/hr	47.0	47.7
SC A	Count	240 0.2949	240
	Standard Deviation	0.2949	0.3281
	Total of three flow values	10.3	10.3
	Average, k lb/hr	10.3	10.3
SC B	Count Standard Deviation	240	240 0.0656
	Standard Deviation	0.0412	0.0656
	Total of three flow values	14.3	14.5
-	Average, k lb/hr	14.1	14.3
SC C	Count	240	240
	Standard Deviation	0.1	0.1073

JEA Northside Unit 2 Test #2 50 / 50 Blend - Pittsburgh 8 Coal Pet Coke SUMMARY PI DATA

<u>Substance</u>	Characteristic Being Measured	Values Used in Efficiency Calculation	
	Total of three flow values	46.6	46.8
Primary Air to SC D	Average, k lb/hr	46.0	45.9
	Count	240	240
	Standard Deviation	0.4491	1.5559
Combustion Air Flow into PAH (hot), lb/hr	Total of fourteen flow values	13878.8	14104.5
	Average, k lb/hr	13853.4	14054.1
	Count	240	240
	Standard Deviation	55.7703	51.5375
Combustion Air	Total of four flow values	53.9	54.9
Flow bypassing PAH (cold), lb/hr	Average, k lb/hr	53.2	53.9
	Count	240	240
	Standard Deviation	0.2761	0.6130
Total air Flow, klb/hr	Average, k lb/hr	2393.5	2382.7
	Count	240	240
	Standard Deviation	7.8346	11.5825

ATTACHMENT E

Abbreviation List - Refer to Section 1.2

ATTACHMENT F Isolation Valve List

Hole #	Description	Approximate Location		Closed (Yes / No)	es / No)	
			13-Jan-04	14-Jan-04	15-Jan-04	16-Jan-04
37	RHA to CRH	Next to Heat 1	alosed o	175010	clused	loss)
Use Digital Readout	MS Bypass to CRH (Upstream)	Next to Heater 1	Closed (1080	1,300	proj
38	Desup Wtr from BFP Disch to MS Bypass		Cloud A	closed	Closed	10504
Bare Pipe	Heater 1 Running Vent	On Side of Heater 1	0,460	0,000	C ouch	C(0 204
Bare Pipe	Bare Pipe Heater 1 Relief Vent	Top of Heater 1	[550]]) Justo	(1 may)	1000
49	HRH Bypass to Condenser (Upstream)	Bypass line upstream of valve	Y 307	closed	(WICH	7213
20	Desup Wtr from BFP Disch to HRH Byp	Vertical Pipe near HRH Bypass	(OKM	perojo	Why)	1000
1/25	Htr 1 Dump to Cond	Up/Downstream of Valve	9890	408017	(peso)	1086
33	Aux Steam Header (GRAY Valve) 공기	Platform Overhead	2000	10800	12013	18810
22	CRH Line Drains - common line	Below Turbine) no)2	7050	文章 (see)	
26	CRH Line Drains - common line	Below Turbine	Y > 0] J	6. 10 year	1000	
22	CRH Line Drains - North	Below Turbine	85017	10501	MACO	
28	CRH Line Drains - South	Below Turbine	<i>p2</i> (9))	2010	11/2	1000
09	MS Line Drain	Below Turbine	pess 9)2	(0204)	1200	(62.0)
61	MS Line Drain	Below Turbine	ps0)7	0.0004	>	(2010)
#1	Extraction Drain	Below Turbine	p30)2	(08ed	C1084	630/0
	Heat Soak Valve ちゅうかい	Below Turbine	7 124017	520	18897	1000
	>					

#1 Houter shall oring bulling small anot

Cycle Isolation Checklist

	Hole #	Description	Approximate Location	Temp Check
	Mezzanii	ne Level		
	35	DA Pegging Steam (Upstream)	Next to Heater 1	
	36	DA Pegging Steam (Downstream)	Next to Heater 1	
	34	DA Pegging Steam Line Drain	Next to Heater 1	
	 37	RHA to CRH	Next to Heater 1	
	39	MS Bypass to CRH (Upstream)	Over railing by Heater 1	
	Use Digital	110.5		
4	Readout	MS Bypass to CRH (Downstream)	Next to Heater 1	
	38	Desup Wtr from BFP Disch to MS Bypass	Near railing by Heater 1	
	→ Bare Pine	Heater 1 Running Vent	On Side of Heater 1	
		Heater 1 Relief Vent	Top of Heater 1	
	Visual	Heater 1 FW Bypass	Directly above Heater 1	
	v ioudi	Trouter 1777 Bypase	Directly above reducer 1	
	Bare Pipe	Heater 2 Running Vent	On Side of Heater 2	
<i>,</i>	Bare Pipe	Heater 2 Relief Vent	Top of Heater 2	
M	Visual	Heater 2 FW Bypass	Directly above Heater 2	
V				
	41	Aux Steam to Unit 3 CRH	Against wall - stairs near Htr 5	
	40	Aux Steam from Unit 3 CRH	Against wall - stairs near Htr 5	
	42	MS to SSH	Platform (overhead)	
	43	SSR Bypass Line	Platform (overhead)	
	44	Aux Steam Supply Line to SSR	Vertical Pipe near Platform	
1	Gauge	SSH Pressure	Board on Platform	
	45	Heater 4 Running Vent	Side of Heater 4	
		Heater 4 Relief Vent	Top of Heater 4	
	Visual	Heater 4 FW Bypass	Directly above Heater 4	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	46	Heater 5 Vent	Side of Heater 5	
	47	Heater 5 Vent	Side of Heater 5	
	Bare Pipe	Heater 5 Relief Vent	Top of Heater 5	
	Visual	Heater 5 FW Bypass	Directly above Heater 5	
	40	ODD Divit to DED O	T. 0	r
	48	CBP Disch to BFP Suction	To the side of Heater 5	
	Visual	Heater 6 FW Bypass	Near Condenser Wall	1
	19	BDV to Cond	Near Condenser Wall (right side)	
	20	RFDV (Ventilator Valve) to Cond	Bare Pipe near Cond Wall (R/S)	
	21	Equalizer Valve to Cond (CRV-1)	Bare Pipe near Cond Wall (R/S)	
	22	Equalizer Valve to Cond (CRV-2)	Bare Pipe near Cond Wall (R/S)	
	12	MS SV Below Seat Drains to Cond	Below MS Stop Valves	
	14	MS SV Below Seat Drains to Cond	Below MS Stop Valves	
	52	MS SV Above Seat Drains to Cond	Below MS Stop Valves	
	53	MS SV Above Seat Drains to Cond	Below MS Stop Valves	
	13	Stm Lead Drains	Near Condenser Wall (R/S)	
	16	Stm Lead Drains	Near Condenser Wall (R/S)	
68 N	17	Stm Lead Drains	Near Condenser Wall (R/S)	
CED.	18	Stm Lead Drains	Near Condenser Wall (R/S)	

Cycle Isolation Checklist

Hole # 15 23	Description CRV Drain Lines CRV Drain Lines	Approximate Location Near HRH Line Hear HRH Line	Temp Check
DCS 50 Visual Visual	HRH Bypass to Condenser (Upstream) HRH Bypass to Condenser (Downstream) Desup Wtr from BFP Disch to HRH Byp SDBFP Recirc to DA MDBFP Recirc to DA	Bypass line upstream of valve Control Room Vertical Pipe near HRH Bypass Near HRH Bypass Line Near HRH Bypass Line	
	Condenser Vacuum		
Ground			F
24 7 8 6 10 9 11 51	TDV to Cond (SS Dump) CRH Drain Hdr 1 MS Drain Hdr 2 Extraction Drain Hdr 3 Drain Hdr 4 Drain Hdr 5 Steam Lead Drains BAC Return to Condenser (CV-4)	Into Condenser (use platform) Hdr into Cond on Left Side Hdr into Cond on Left Side Hdr into Cond on Left Side Hdr into Cond on Right Side Hdr into Cond on Right Side Hdr into Cond on Right Side Bare Pipe - Side of Condenser U/S of CV-4	
Double Isolate	Hotwell Makeup		
	Polisher Drains Bitter Water Pump Off Unit 2 Fill Pump Off	Near Condensate Polishing Sys Near Condensate Polishing Sys Near Condensate Polishing Sys	Yes / No Yes / No
1/25 2 3/26 4/27 5/28 29 30 31 32 33 54 59 55 56 57 58 60 61	Htr 1 Dump to Cond Htr 6 Dump to Cond Htr 2 Dump to Cond Htr 4 Dump to Cond Htr 5 Dump to Cond Aux Stm to CRH Warm. (U/S of Check VIv) Aux Stm to CRH Warm. (D/S of Check VIv) Aux Steam to/from Unit 3 CRH Aux Steam to SSH Aux Steam Header HRH Line Drains HRH Line Drains CRH Line Drains - common line CRH Line Drains - North CRH Line Drains - South MS Line Drain MS Line Drain	Up/Downstream of Valve Upstream of Valve Up/Downstream of Valve Up/Downstream of Valve Up/Downstream of Valve Up/Downstream of Valve Platform Overhead Platform Overhead Platform Overhead Platform Overhead Platform Overhead Platform Overhead Below Turbine	
	# (Extr Prain Feat Soak-Walve	Below tarbine	

Cycle Isolation Checklist

Hole #

Description

Approximate Location

Temp Check

Hotwell Make-Up Valves

Boiler Blow Down Valve

Valve SA 328 (turbine soak line)

Auxiliary Steam Supply to Seal Steam System

Valve 331 Auxiliary Steam from Cold RH

Reheat Attemperator

Heater #1 Continuous Vent

Heater #2 Continuous Vent

Heater #4 Continuous Vent

Heater #5 Continuous Vent

ATTACHMENT G

Fuel Analyses - 50/50 Blend Pet Coke and Pittsburgh 8 Coal

Fuel			Unit #2 Jan. 27, 2004		
			Jan. 27, 2004		
Time	1L & 2L 11:30	1L & 2L 12:30	1L & 2L 13:30	1L & 2L 14:30	1L & 2L 15:30
Proximate Analysis					
Moisture, wt% (±0.25)	7.24	7.81	7.64	7.04	
Ash, wt% (±0.49)	5.45	6.25	5.54	5.68	
Volatile, wt% (±1.0)	36.90	36.65		30.63	
Fixed Carbon, wt% (±1.0)	50.41	49.29	48.83	56.66	49.38
Ultimate Analysis					
Carbon, wt% (±2.51)	75.62	73.42	72.95	73.90	76.37
Hydrogen, wt% (±0.30)	4.24	4.13	4.49	4.43	4.71
Nitrogen, wt% (±0.17)	1.50	1.58	1.39	1.44	
Sulfur, wt% (±0.009)	4.68	5.61	6.73	6.19	
Moisture, wt% (±0.25)	7.24	7.81	7.64	7.04	
Ash, wt% (±0.49)	5.45	6.25	5.54	5.68	
Oxygen, wt% (±2.51)	1.27	1.21	1.26	1.33	
Higher Heating, Btu/lb (±107 Btu/lb)	13,361	13,457	13,371	13,391	13,567
Total Chlorine, wt% (±200 ug/g)	0.06	0.07	0.17	0.09	0.07
Total Fluorine, wt% (±15 ug/g)	0.000	0.000		0.000	0.000
Total Mercury, ug/g (±0.031 ug/g)	0.003	0.001	0.003	0.002	0.002
Total Lead, ug/g (±9 ug/g)	0.000	0.002		0.000	
Moisture (oven), wt% (±1.0)	7.24	7.81	7.64	7.04	6.96
Ash elemental analysis					
SiO ₂ , wt% (±0.65)	0.55	0.51	0.58	0.66	0.71
Al ₂ O ₃ , wt% (±0.98)	58.89	63.91	60.76	62.89	67.44
Fe ₂ O ₃ , wt% (±1.44)	5.59	6.73	8.08	6.19	5.39
CaO, wt% (±4.74)	22.56	14.73	17.81	15.96	13.75
MgO, wt% (±1.25)	3.22	2.72	2.83	3.09	2.77
Na ₂ O, wt% (±3.70)	5.47	6.36	6.04	6.55	6.04
K ₂ O, wt% (±4.25)	3.28	4.54	3.32	4.01	3.35
Ti ₂ O, wt% (±1.52)	0.42	0.51	0.57	0.64	0.55
Particulate size distribution					
Particulate Left Mesh, 1/2", wt%	14.11	8.60	8.32	14.05	8.99
Particulate Left Mesh, 1/4", wt%	19.73	18.26	21.18	16.37	17.71
Particulate Left Mesh, #4, wt%	9.31	7.24	6.88	7.69	
Particulate Left Mesh, #8, wt%	18.58	18.87	19.29	18.76	
Particulate Left Mesh, #14, wt%	11.84	15.35		13.94	
Particulate Left Mesh, #28, wt%	16.91	20.47	18.37	18.23	21.77
Particulate Left Mesh, #50, wt%	5.96	7.10		6.80	6.81
Particulate Left Mesh, #100, wt%	1.97	2.50	2.49	2.55	
Bottom, wt%	0.75	0.59	0.76	0.69	0.41

The values obtained are averages of tests performed on two separate composite samples for each day and each hour

Fuel			Unit #2		
			Jan. 28, 2004		
Time	1L & 2L 10:00	1L & 2L 11:00	1L & 2L 12:00	1L & 2L 15:00	1L & 2L 16:00
Proximate Analysis					
Moisture, wt% (±0.25)	6.95	7.18	7.01	6.84	7.29
Ash, wt% (±0.49)	6.02	6.86	7.28	4.80	4.63
Volatile, wt% (±1.0)	38.02	36.95	33.35	37.82	37.96
Fixed Carbon, wt% (±1.0)	49.02	49.01	52.37	50.55	50.13
Ultimate Analysis					
Carbon, wt% (±2.51)	71.58	75.23	74.65	75.38	71.55
Hydrogen, wt% (±0.30)	4.73	5.00	4.37	4.26	4.67
Nitrogen, wt% (±0.17)	1.90	1.49	1.59	1.66	1.53
Sulfur, wt% (±0.009)	7.63	2.99	3.77	5.66	9.27
Moisture, wt% (±0.25)	6.95	7.18	7.01	6.84	7.29
Ash, wt% (±0.49)	6.02	6.86		4.80	4.63
Oxygen, wt% (±2.51)	1.21	1.27	1.34	1.40	1.07
Higher Heating, Btu/lb (±107 Btu/lb)	12,971	13,563	13,445	13,340	12,936
Total Chlorine, wt% (±200 ug/g)	0.17	0.15	0.06	0.08	0.11
Total Fluorine, wt% (±15 ug/g)	0.000	0.000	0.000	0.000	0.000
Total Mercury, ug/g (±0.031 ug/g)	0.002	0.003	0.006	0.003	0.003
Total Lead, ug/g (±9 ug/g)	0.006	0.003	0.001	0.000	0.000
Moisture (oven), wt% (±1.0)	6.95	7.18	7.01	6.84	7.29
Ash elemental analysis					
SiO ₂ , wt% (±0.65)	0.54	0.48	1.08	1.11	0.68
Al ₂ O ₃ , wt% (±0.98)	60.13	64.01	67.55	59.31	66.96
Fe ₂ O ₃ , wt% (±1.44)	9.82	7.52	6.47	6.30	6.35
CaO, wt% (±4.74)	15.25	13.67	13.85	20.82	12.21
MgO, wt% (±1.25)	2.97	2.75	2.54	2.88	2.41
Na ₂ O, wt% (±3.70)	6.05	6.49	4.65	5.39	7.53
K ₂ O, wt% (±4.25)	4.62	4.47	3.44	3.65	3.30
Ti ₂ O, wt% (±1.52)	0.62	0.60	0.43	0.51	0.55
Particulate size distribution					
Particulate Left Mesh, 1/2", wt%	11.11	14.84	15.29	9.15	8.96
Particulate Left Mesh, 1/4", wt%	15.79	18.35	17.06	17.18	15.09
Particulate Left Mesh, #4, wt%	7.47	7.89	7.05	6.09	6.82
Particulate Left Mesh, #8, wt%	19.14	17.13	16.65	18.20	18.65
Particulate Left Mesh, #14, wt%	15.67	12.63	15.04	15.47	18.06
Particulate Left Mesh, #28, wt%	20.37	17.67	17.87	23.57	22.00
Particulate Left Mesh, #50, wt%	6.71	7.53	7.01	5.92	6.65
Particulate Left Mesh, #100, wt%	2.17	2.56	2.56	3.55	2.07
Bottom, wt%	0.39	0.55	0.56	0.31	0.66

ATTACHMENT H

Limestone Analyses

JEA Northside Unit2 Test #2 50/50 Blend Pet Coke and Pittsburgh 8 Coal

50/50 Blend Pet Coke and Pittsburgh 8 Coa SUMMARY LIMESTONE ANALYSES

Limestone			Test #2			
			Jan. 27, 2004	•		
Lab number	32077-01A	32077-02B	32077-03C	32077-04D	32077-05E	Average
Date	1/27/2004	1/27/2004	1/27/2004	1/27/2004	1/27/2004	Values
Time	11:30	12:30	13:30	14:30	15:30	Values
Compound Analysis						
CaCO ₃ , wt% (±0.41)	91.26	90.18	91.64	92.51	91.39	91.40
MgCO ₃ , wt% (±0.41)	3.17	3.03	2.97	2.82	2.74	2.95
Moisture (oven), wt% (±1.0)	0.53	0.50	0.52	0.47	0.53	0.51
Inerts (subtraction), wt% (±1.0)	5.03	6.29	4.87	4.20	5.33	5.15
Total Chlorine, wt% (±200 ug/g)	0.12	0.11	0.05	0.06	0.13	0.10
Total Fluorine, wt% (±15 ug/g)	0.000	0.000	0.000	0.000	0.000	0.00
Total Mercury, ug/g (±0.031 ug/g)	0.000	0.000	0.000	0.000	0.000	0.00
Total Lead, ug/g (±9 ug/g)	0.000	0.000	0.000	0.000	0.000	0.00
Elemental analysis, AA						
Na, wt% (±0.5 ug/g)	0.01	0.01	0.01	0.01	0.01	0.01
K, wt% (±0.5 ug/g)	0.000	0.01	0.01	0.000	0.000	0.00
Particulate size distribution						
Particulate Left Mesh, #8, wt%	28.03	30.08	43.46	31.92	31.52	33.00
Particulate Left Mesh, #14, wt%	13.52	17.98	10.34	18.11	14.56	14.90
Particulate Left Mesh, #28, wt%	16.38	18.15	10.41	18.86	14.69	15.70
Particulate Left Mesh, #50, wt%	9.82	9.30	8.12	9.85	9.00	9.22
Particulate Left Mesh, #100, wt%	8.02	5.56	5.93	6.14	6.10	6.35
Particulate Left Mesh, #200, wt%	9.45	5.88	8.67	9.82	9.54	8.67
Particulate Left Mesh, #270, wt%	7.42	6.38	8.31	2.60	10.80	7.10
Bottom, wt%	5.86	4.54	3.58	1.56	2.72	3.65
Conversion Fraction	83.46	85.81	85.70	83.27	84.86	84.62

JEA Northside Unit2 Test #2 io Blend Pet Coke and Pittsburgh

50/50 Blend Pet Coke and Pittsburgh 8 Coal SUMMARY LIMESTONE ANALYSES

Limestone			Test #2			
			Jan. 28, 2004	•		
Lab number	32078-01A	32078-02B	32078-03C	32078-04D	32078-05E	
Date	1/28/2004	1/28/2004	1/28/2004	1/28/2004	1/28/2004	Average Values
Time	10:00	11:00	12:00	15:00	16:00	Values
Compound Analysis						
CaCO ₃ , wt% (±0.41)	84.83	87.93	86.04	87.88	85.28	86.39
MgCO ₃ , wt% (±0.41)	2.72	3.00	2.78	2.76	2.83	2.82
Moisture (oven), wt% (±1.0)	0.29	0.30	0.29	0.47	0.45	0.36
Inerts (subtraction), wt% (±1.0)	12.16	8.76	10.89	8.89	11.44	10.43
Total Chlorine, wt% (±200 ug/g)	0.03	0.20	0.07	0.05	0.05	0.08
Total Fluorine, wt% (±15 ug/g)	0.000	0.000	0.000	0.000	0.000	0.00
Total Mercury, ug/g (±0.031 ug/g)	0.001	0.002	0.004	0.002	0.004	0.00
Total Lead, ug/g (±9 ug/g)	0.000	0.000	0.000	0.000	0.000	0.00
Elemental analysis, AA						
Na, wt% (±0.5 ug/g)	0.01	0.01	0.01	0.01	0.01	0.01
K, wt% (±0.5 ug/g)	0.000	0.000	0.01	0.000	0.000	0.00
Particulate size distribution						
Particulate Left Mesh, #8, wt%	24.94	28.39	44.25	40.85	39.33	35.55
Particulate Left Mesh, #14, wt%	13.20	11.48	17.67	17.64	15.00	15.00
Particulate Left Mesh, #28, wt%	13.65	12.24	13.38	12.98	13.21	13.09
Particulate Left Mesh, #50, wt%	11.79	12.47	5.92	5.91	14.44	10.11
Particulate Left Mesh, #100, wt%	13.90	15.21	6.54	6.53	6.03	9.64
Particulate Left Mesh, #200, wt%	20.58	12.54	5.33	5.32	6.15	9.98
Particulate Left Mesh, #270, wt%	0.00	4.89	7.83	7.82	2.82	4.67
Bottom, wt%	0.89	1.36	0.79	1.54	1.63	1.24
Conversion Fraction	80.51	79.40	79.03	78.70	77.81	79.09

ATTACHMENT I Bed Ash Analyses

Bed Ash				Test #2			
				an. 27, 2004			
Lab Number	32075-01	32075-02	32075-03	32075-04	32075-05	32075-06	32075-07
Date	1/27/2004	1/27/2004	1/27/2004 12:30	1/27/2004	1/27/2004	1/27/2004	1/27/2004 15:30
Unburned carbon, wt%	11:30 0.01	12:30 0.02	0.06	13:30 0.01	13:30 0.08	14:30 0.03	0.02
Official Carbon, wt%	0.01	0.02	0.00	0.01	0.06	0.03	0.02
Compound analysis							
CaSO4, wt% (±0.2)	24.90	15.60	18.90	27.60	20.40	26.40	15.90
Sulfur, wt% (±0.09)	0.94	0.62	0.70	1.04	0.77	1.07	0.65
Juliur, Wt/6 (10.03)	0.34	0.02	0.70	1.04	0.77	1.07	0.00
Ash compound analysis							
SiO2, wt% (±0.65)	2.64	2.12	2.02	1.88	1.83	2.17	1.70
SO3, wt% (±0.98)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3, wt% (±1.44)	58.97	68.43	70.11	66.97	71.79	68.51	71.79
CaO, wt% (±4.74) (Not Part of Normalization)	20.74	21.38	21.34	21.06	20.96	21.12	21.30
MgO, wt% (±1.25)	32.45	24.42	23.16	24.31	21.90	24.52	22.29
Na2O, wt% (±3.70)	3.71	2.83	2.35	3.28	2.27	3.24	2.13
K2O, wt% (±4.25)	0.87	0.32	0.23	2.30	0.22	0.37	0.19
Vanadium, wt% (±1.0)	0.57	0.63	0.81	0.23	0.69	0.02	0.48
Nickel, wt% (±1.0)	0.80	1.24	1.32	1.03	1.30	1.18	1.43
Elemental analysis, AA							
Na, wt% (±0.5 ug/g)	0.01	0.02	0.02	0.02	0.02	0.02	0.02
K, wt% (±0.5 ug/g)	0.000	0.000	0.000	0.02	0.000	0.000	0.000
Particulate size distribution							
Particulate Left Mesh, 1/2", wt%	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particulate Left Mesh, #4, wt%	0.00	0.00	0.00	0.00	0.00	0.00	
Particulate Left Mesh, #8, wt%	2.37	21.04	4.25	4.48	4.00	8.04	8.44
Particulate Left Mesh, #14, wt%	5.11	7.15	6.15	6.46	6.19	6.22	6.49
Particulate Left Mesh, #28, wt%	18.24	18.53	18.58	16.70	16.96	18.01	17.69
Particulate Left Mesh, #48, wt%	26.34	19.79	23.28	20.91	23.68	22.58	21.92
Particulate Left Mesh, #100, wt%	34.15	18.11	26.15	25.22	27.26	25.91	24.19
Particulate Left Mesh, #200, wt%	11.99	15.07	19.21	25.64	20.96	17.98	20.22
Bottom, wt%	0.33	0.04	0.18	0.09	0.07	0.16	0.10

Bed Ash	
Lab Number Date Time	Average Values
Unburned carbon, wt%	0.03
Compound analysis	
CaSO4, wt% (±0.2)	21.39
Sulfur, wt% (±0.09)	0.83
Ash compound analysis	
SiO2, wt% (±0.65)	2.05
SO3, wt% (±0.98)	0.00
Fe2O3, wt% (±1.44)	68.08
CaO, wt% (±4.74) (Not Part of Normalization)	21.13
MgO, wt% (±1.25)	24.72
Na2O, wt% (±3.70)	2.83
K2O, wt% (±4.25)	0.64
Vanadium, wt% (±1.0)	0.49
Nickel, wt% (±1.0)	1.18
Elemental analysis, AA	
Na, wt% (±0.5 ug/g)	0.02
K, wt% (±0.5 ug/g)	0.00
Particulate size distribution	
Particulate Left Mesh, 1/2", wt%	0.00
Particulate Left Mesh, #4, wt%	0.00
Particulate Left Mesh, #8, wt%	7.52
Particulate Left Mesh, #14, wt%	6.25
Particulate Left Mesh, #28, wt%	17.82
Particulate Left Mesh, #48, wt%	22.64
Particulate Left Mesh, #100, wt%	25.85
Particulate Left Mesh, #200, wt%	18.72
Bottom, wt%	0.14

Bed Ash				Test #2			
			J	an. 28, 2004	1		
Lab Number	32076-01	32076-02	32076-03	32076-04	32076-05	32076-06	32076-07
Date	1/28/2004	1/28/2004	1/28/2004	1/28/2004	1/28/2004	1/28/2004	1/28/2004
Time	10:00	11:00	12:00	12:00	15:00	16:00	16:00
Unburned carbon, wt%	0.02	0.01	0.01	0.03	0.01	0.01	0.01
Compound analysis							
CaSO4, wt% (±0.2)	23.10	20.70	24	21.30	20.40	26.70	27.60
Sulfur, wt% (±0.09)	0.86	0.81	0.81	0.78	0.83	1.09	1.11
Ash compound analysis							
SiO2, wt% (±0.65)	1.01	1.97	1.99	1.85	1.78	2.04	1.76
SO3, wt% (±0.98)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3, wt% (±1.44)	72.10	69.20	69.34	72.60	67.67	70.82	70.61
CaO, wt% (±4.74) (Not Part of Normalization)	21.03	21.24	21.23	20.92	21.13	21.38	21.39
MgO, wt% (±1.25)	23.22	24.83	23.86	21.34	25.93	23.88	23.43
Na2O, wt% (±3.70)	2.01	2.26	2.52	2.11	2.54	1.78	2.10
K2O, wt% (±4.25)	0.20	0.33	0.36	0.25	0.30	0.21	0.30
Vanadium, wt% (±1.0)	0.05	0.49	0.88	0.67	0.65	0.02	0.60
Nickel, wt% (±1.0)	1.41	0.93	1.04	1.19	1.13	1.26	1.20
Elemental analysis, AA							
Na, wt% (±0.5 ug/g)	0.01	0.01	0.02	0.02	0.01	0.01	0.01
K, wt% (±0.5 ug/g)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Particulate size distribution							
Particulate Left Mesh, 1/2", wt%	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particulate Left Mesh, #4, wt%	0.13	0.21	0.25	0.31	0.27	0.31	0.22
Particulate Left Mesh, #8, wt%	3.07	4.78	3.77	7.20	11.16	10.20	9.48
Particulate Left Mesh, #14, wt%	4.51	9.23	5.72	6.37	12.11	7.71	6.32
Particulate Left Mesh, #28, wt%	13.55	15.52	17.76	16.71	20.91	19.22	16.63
Particulate Left Mesh, #48, wt%	20.07	21.21	23.03	20.19	19.33	21.18	23.77
Particulate Left Mesh, #100, wt%	28.39	26.52	26.91	22.75	20.86	24.12	26.11
Particulate Left Mesh, #200, wt%	29.85	22.36	22.44	26.32	14.72	17.02	17.34
Bottom, wt%	0.09	0.17	0.13	0.15	0.11	0.14	0.13

Bed Ash	
Lab Number Date Time	Average Values
Unburned carbon, wt%	0.01
Compound analysis	
CaSO4, wt% (±0.2)	23.40
Sulfur, wt% (±0.09)	0.90
Ash compound analysis	
SiO2, wt% (±0.65)	1.77
SO3, wt% (±0.98)	0.00
Fe2O3, wt% (±1.44)	70.33
CaO, wt% (±4.74) (Not Part of Normalization)	21.19
MgO, wt% (±1.25)	23.78
Na2O, wt% (±3.70)	2.19
K2O, wt% (±4.25)	0.28
Vanadium, wt% (±1.0)	0.48
Nickel, wt% (±1.0)	1.16
Elemental analysis, AA	
Na, wt% (±0.5 ug/g)	0.01
K, wt% (±0.5 ug/g)	0.00
Particulate size distribution	
Particulate Size distribution Particulate Left Mesh, 1/2", wt%	0.00
Particulate Left Mesh. #4. wt%	0.00
Particulate Left Mesh. #8. wt%	7.09
Particulate Left Mesh, #14, wt%	7.42
Particulate Left Mesh, #28, wt%	17.19
Particulate Left Mesh, #48, wt%	21.25
Particulate Left Mesh, #100, wt%	25.09
Particulate Left Mesh, #200, wt%	21.44
Bottom, wt%	0.13

ATTACHMENT J Fly Ash (Air Heater and PJFF) Analyses

Fly Ash			Test #2			
			Jan. 27, 2004			
Lab Number	32073-05	32073-08	32073-10	32073-12	32073-16	Avenage
	(Air Heater)	(Air Heater)	(Air Heater)	(Air Heater)	(Air Heater)	Average Values
Time	11:30	12:30	13:30	14:30	15:30	Values
Unburned carbon, wt%	1.07	1.05	1.72	2.10	2.49	1.69
Compound analysis						
CaSO4, wt% (±0.2)	26.10	18.90	29.10	29.10	21.60	24.96
Sulfur, wt% (±0.09)	0.91	0.73	1.08	1.17	0.90	0.96
Ash compound analysis						
SiO2, wt% (±0.65)	1.03	0.59	0.85	0.81	0.74	0.80
SO3, wt% (±0.98)	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3, wt% (±1.44)	73.84	74.81	72.33	72.49	72.53	73.20
CaO, wt% (±4.74) (Not Part of Norm	20.99	21.30	20.76	20.71	21.03	20.96
MgO, wt% (±1.25)	10.14	9.65	10.41	10.60	11.23	10.41
Na2O, wt% (±3.70)	7.76	7.84	8.84	8.92	8.27	8.33
K2O, wt% (±4.25)	5.36	5.36	5.74	6.06	5.51	5.61
Vanadium, wt% (±1.0)	0.76	0.65	0.76	0.02	0.63	0.57
Nickel, wt% (±1.0)	1.10	1.09	1.06	1.11	1.10	1.09
Elemental analysis, AA						
Na, wt% (±0.5 ug/g)	0.04	0.05	0.05	0.05	0.04	0.05
K, wt% (±0.5 ug/g)	0.02	0.02	0.02	0.02	0.02	0.02
Particulate size distribution						
Particulate Left Mesh, #4, wt%	0.33	0.08	0.08	0.00	0.00	0.10
Particulate Left Mesh, #14, wt%	0.17	0.17	0.06	0.46	0.04	0.18
Particulate Left Mesh, #28, wt%	0.12	0.13	0.10	0.29	0.17	0.16
Particulate Left Mesh, #48, wt%	0.21	0.15	0.07	0.29	0.00	0.14
Particulate Left Mesh, #100, wt%	0.33	0.45	0.35	0.75	0.37	0.45
Particulate Left Mesh, #270, wt%	79.58	76.31	75.81	72.30	70.32	74.86
Particulate Left Mesh, #325, wt%	5.16	6.01	5.92	6.58	6.24	5.98
Bottom, wt%	13.74	16.71	17.60	18.96	22.61	17.92

Fly Ash	Test #2					
	Jan. 27, 2004					
Lab Number	32073-09	32073-11	32073-13	32073-17		
	(Bag House)	(Bag House)	(Bag House)	(Bag House)	Average Values	
Time	12:30	13:30	14:30	15:30	Values	
Unburned carbon, wt%	7.17	6.74	6.97	6.96	5.91	
Compound analysis						
CaSO4, wt% (±0.2)	39.60	26.10	27.60	18.90	27.43	
(10.2)	00.00	20.10	27.00	10.00	27.10	
Sulfur, wt% (±0.09)	1.40	0.90	1.02	0.77	1.01	
Ash compound analysis						
SiO2, wt% (±0.65)	0.32	0.20	0.25	0.19	0.35	
SO3, wt% (±0.98)	0.00	0.00	0.00	0.00	0.00	
Fe2O3, wt% (±1.44)	70.32	74.15	76.04	74.40	73.62	
CaO, wt% (±4.74) (Not Part of Norm	21.17	21.22	21.27	20.98	21.16	
MgO, wt% (±1.25)	4.98	5.79	5.58	5.92	5.57	
Na2O, wt% (±3.70)	13.75	10.81	9.24	10.64	11.11	
K2O, wt% (±4.25)	9.75	7.76	6.29	7.55	7.84	
Vanadium, wt% (±1.0)	0.44	0.86	2.48	0.85	1.16	
Nickel, wt% (±1.0)	0.43	0.43	0.12	0.44	0.35	
Elemental analysis, AA						
Na, wt% (±0.5 ug/g)	0.24	0.19	0.18	0.18	0.20	
K, wt% (±0.5 ug/g)	0.18	0.15	0.14	0.14	0.15	
Particulate size distribution						
Particulate Left Mesh, #4, wt%	0.00	0.00	0.00	0.00	0.00	
Particulate Left Mesh, #14, wt%	0.09	0.00	0.00	0.17	0.07	
Particulate Left Mesh, #28, wt%	0.00	0.00	0.00	0.00	0.00	
Particulate Left Mesh, #48, wt%	0.00	0.00	0.00	0.00	0.00	
Particulate Left Mesh, #100, wt%	0.10	0.00	0.00	0.25	0.09	
Particulate Left Mesh, #270, wt%	19.11	19.72	19.33	20.35	19.63	
Particulate Left Mesh, #325, wt%	25.25	29.75	26.11	22.34	25.86	
Bottom, wt%	55.45	50.16	54.56	55.60	53.94	

Fly Ash	Test #2						
	Jan. 28, 2004						
Lab Number	32073-01	32073-03	32073-06	32073-14	32073-18	Average	
	(Air Heater)	(Air Heater)	(Air Heater)	(Air Heater)	(Air Heater)	Average Values	
Time	10:00	11:00	12:00	15:00	16:00	Values	
Unburned carbon, wt%	1.73	1.38	1.79	1.61	1.85	1.67	
Compound analysis							
CaSO4, wt% (±0.2)	39.60	29.40	33.30	26.70	27.90	31.38	
Sulfur, wt% (±0.09)	1.52	1.09	1.26	1.19	1.04	1.22	
Ash compound analysis							
SiO2, wt% (±0.65)	1.05	0.80	1.03	0.54	0.69	0.82	
SO3, wt% (±0.98)	0.00	0.00	0.00	0.00	0.00	0.00	
Fe2O3, wt% (±1.44)	72.87	73.89	73.80	74.60	75.47	74.13	
CaO, wt% (±4.74) (Not Part of Norm	21.00	21.10	21.10	21.05	21.07	21.07	
MgO, wt% (±1.25)	11.04	10.26	10.19	10.36	10.33	10.44	
Na2O, wt% (±3.70)	8.32	8.41	7.94	8.03	7.05	7.95	
K2O, wt% (±4.25)	5.51	5.59	5.04	5.46	4.70	5.26	
Vanadium, wt% (±1.0)	0.21	0.06	1.00	0.01	0.71	0.40	
Nickel, wt% (±1.0)	1.00	1.00	1.01	1.00	1.04	1.01	
Elemental analysis, AA							
Na, wt% (±0.5 ug/g)	0.05	0.05	0.05	0.05	0.04	0.05	
K, wt% (±0.5 ug/g)	0.02	0.02	0.02	0.02	0.01	0.02	
Particulate size distribution							
Particulate Left Mesh, #4, wt%	0.00	0.00	0.13	0.08	0.00	0.04	
Particulate Left Mesh, #14, wt%	0.04	0.07	0.11	0.17	0.00	0.08	
Particulate Left Mesh, #28, wt%	0.04	0.11	0.09	0.17	0.08	0.10	
Particulate Left Mesh, #48, wt%	0.04	0.08	0.12	0.14	0.04	0.08	
Particulate Left Mesh, #100, wt%	0.25	0.28	0.37	0.48	0.46	0.37	
Particulate Left Mesh, #270, wt%	75.79	77.21	76.17	74.94	77.55	76.33	
Particulate Left Mesh, #325, wt%	6.70	6.02	5.88	5.89	5.59	6.02	
Bottom, wt%	16.77	16.23	17.13	18.14	15.87	16.83	

Fly Ash			Test #2			
	Jan. 28, 2004					
Lab Number	32073-02	32073-04	i i		32073-19	
	(Bag House)	(Bag House)	(Bag House)	(Bag House)	(Bag House)	Average Values
Time	10:00	11:00	12:00	15:00	16:00	values
Unburned carbon, wt%	7.27	6.68	6.45	6.06	6.13	1.67
Compound analysis						
CaSO4, wt% (±0.2)	30.90	30.60	29.40	29.40	28.10	31.38
Sulfur, wt% (±0.09)	1.21	1.19	1.10	1.18	1.04	1.22
Ash compound analysis						
SiO2, wt% (±0.65)	0.37	0.43	0.32	0.33	0.35	0.82
SO3, wt% (±0.98)	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3, wt% (±1.44)	71.78	73.66	72.59	73.43	76.35	74.13
CaO, wt% (±4.74) (Not Part of Norm	21.26	20.79	20.89	21.30	20.92	21.07
MgO, wt% (±1.25)	5.88	5.66	6.37	6.78	6.21	10.44
Na2O, wt% (±3.70)	12.28	11.14	11.68	10.82	9.71	7.95
K2O, wt% (±4.25)	8.48	7.94	7.90	7.37	6.63	5.26
Vanadium, wt% (±1.0)	0.81	0.78	0.73	0.84	0.46	0.40
Nickel, wt% (±1.0)	0.41	0.39	0.41	0.45	0.29	1.01
Elemental analysis, AA						
Na, wt% (±0.5 ug/g)	0.23	0.23	0.20	0.17	0.14	0.05
K, wt% (±0.5 ug/g)	0.17	0.18	0.15	0.12	0.10	0.02
Particulate size distribution						
Particulate Left Mesh, #4, wt%	0.00	0.00	0.00	0.00	0.00	0.04
Particulate Left Mesh, #14, wt%	0.01	0.04	0.00	0.00	0.07	0.08
Particulate Left Mesh, #28, wt%	0.00	0.00	0.00	0.00	0.00	0.10
Particulate Left Mesh, #48, wt%	0.00	0.00	0.00	0.00	0.00	0.08
Particulate Left Mesh, #100, wt%	0.31	0.92	0.00	0.00	0.39	0.37
Particulate Left Mesh, #270, wt%	18.92	19.93	17.12	20.02	19.13	76.33
Particulate Left Mesh, #325, wt%	26.72	20.38	30.02	21.26	24.25	6.02
Bottom, wt%	54.04	58.32	51.96	58.72	56.16	16.83

ATTACHMENT K

Ambient Data, Jan. 27, 2004 & Jan. 28, 2004

 Date:
 January 27, 2004
 January 28, 2004

 Start:
 1130 hours
 1000 hours

 End:
 1530 hours
 1600 hours

Characteristic Being Measured	Values Used in Eff	iciency Calculation
Dry Bulb Temperature, North / South, deg F	64.24	39.96
Count	482	482
Standard Deviation	3.7952	5.8027
Wet Bulb Temperature, North / South, deg F	57.96	43.19
Count	482	482
Standard Deviation	0.9488	6.8152
Atmospheric Pressure, in Hg	29.99	30.23
Atmospheric Pressure, psia	14.7	14.8
Count	5	6
Standard Deviation	0.00841	0.01025

ATTACHMENT L

Ambient Data, Jan. 29, 2004, Jan. 30, 2004, & Jan. 31, 2004

JEA Northside Unit 2 Test #2 50/50 Blend Pet Coke and Pittsburgh 8 Coal MET DATA PARTIAL LOADS

DATE	TIME	WET BULB, DEG F	DRY BULB, DEG F	PRESSURE, PSIA	RELATIVE HUMIDITY, %	
JAN. 31, 2004	12:00 AM	44	51	14.9	56.25	
40% LOAD	1:00 AM	45	52	14.9	59.97	
	2:00 AM	46	55	14.9	46.59	
	3:00 AM	50	58	14.9	56.38	
\	4:00 AM	49	56	14.9	57.81	
JAN. 29/30, 2004	10:00 PM	45	48	14.85	79.63	
60% LOAD	11:00 PM	44	46	14.85	85.73	
	12:00 PM	43	45	14.85	85.43	
	1:00 AM	45	49	14.85	73.60	
\	2:00 AM	46	50	14.85	74.11	
JAN. 29, 2004	3:00 PM	45.0	56	14.85	40.13	
80% LOAD	4:00 PM	47.0	62	14.85	30.37	
	5:00 PM	47.0	62	14.85	30.37	
	6:00 PM	47.5	58	14.85	44.58	
\	7:00 PM	48.0	56	14.85	57.51	

FIGURES

FIGURE 1	-	GENERAL ARRANGEMENT PLAN, DRAWING NO. 3847-1-100, REV. 3
FIGURE 2	-	GENERAL ARRANGEMENT ELEVATION, DRAWING NO. 3847-1-101, REV. 3
FIGURE 3	-	FABRIC FILTER EAST END ELEVATION, DRAWING NO. 3847-9-268, REV. 2
FIGURE 4	-	GENERAL ARRANGEMENT UNIT 2 ISO VIEW (RIGHT SIDE), DRAWING NO. 43-7587-5-53
FIGURE 5	-	GENERAL ARRANGEMENT UNIT 2 FRONT ELEVATION VIEW A-A, DRAWING NO. 43-7587-5-50, REV. C
FIGURE 6	-	GENERAL ARRANGEMENT UNIT 2 SIDE ELEVATION, DRAWING NO. 43-7587-5-51, REV. C

NOTES

DWG40998 03-MAR-2004 14:18:59